New isotope molecule may add to Venus' greenhouse effect

October 10, 2007
Venus Express
This is an artist's impression of Venus Express orbiting Venus. Credits: ESA

Planetary scientists on both sides of the Atlantic have tracked down a rare molecule in the atmospheres of both Mars and Venus. The molecule, an exotic form of carbon dioxide, could affect the way the greenhouse mechanism works on Venus.

The discovery is being announced today at the annual meeting of the American Astronomical Society’s Division of Planetary Sciences in Orlando, Florida. Its presence could affect the way the greenhouse mechanism works on Venus.

The mystery began back in April 2006, soon after ESA’s Venus Express arrived at the second planet in the Solar System.

A European team including members from France, Belgium and Russia lead by Jean-Loup Bertaux, Service d'Aeronomie du CNRS, France and Ann-Carine Vandaele, Institut d'Aeronomie Spatiale de Belgique, were using their Infrared Atmospheric Spectrometer (SOIR) instrument to measure solar occultations.

To do this, the instrument watches the Sun set behind Venus, allowing the scientists to study the way specific wavelengths of light are absorbed by the planet’s atmosphere. These wavelengths and the level of absorption then give away the identity and amount of gases in the atmosphere.

The team saw an unidentified signature at 3.3 micrometres in the mid-infrared region of the spectrum. “It was conspicuous and systematic, increasing with depth in the atmosphere during the occultation, so we knew it was real,” says Bertaux.

The team kept their discovery confidential as they attempted to identify the molecule responsible. They thought at first that it must be an organic molecule. These molecules contain carbon and hydrogen. However, none of the known organic molecules fitted well with the observations.

Then, in December 2006, Mike Mumma of NASA’s Goddard Space Flight Center, Maryland, enquired whether the SOIR team was seeing anything special on Venus at 3.3 microns. He had discovered an unidentified spectral signature at that wavelength using telescopes on Hawaii pointing at Mars. The two teams compared the absorption signatures: they were identical.

This was a big clue. Both the atmospheres of Mars and Venus are composed of 95% carbon dioxide, although Venus’s atmosphere is much thicker than the one at Mars. The American team suggested that the signature could be coming from an isotope of carbon dioxide, where one oxygen atom is ‘normal’, with eight protons and eight neutrons, while the other has eight protons and ten neutrons. Such an isotope makes up about 1% of carbon dioxide on Earth; the rest contains two normal oxygen atoms.

However, no one had previously seen the molecule absorb at 3.3 micrometres. An investigation by three independent groups, one led by Mumma in America; Sergei Tashkun and Valery Perevalov at Tomsk State University, Russia; and Richard Dahoo at Service d'Aéronomie du CNRS, France, all came to the same conclusion. The signature could be caused by a rare transition only possible in the isotope.

The different weights of the oxygen atoms allow the molecule to alter its vibration in two ways simultaneously, whereas normal molecules can only change one state at a time.

This rare transition allows it to absorb even more energy and so contribute even more to the greenhouse effect on Venus. On Earth, however, there is 250 000 times less carbon dioxide so its additional contribution to our greenhouse effect will be small.

Source: European Space Agency

Explore further: NASA climate modeling suggests Venus may have been habitable

Related Stories

NASA climate modeling suggests Venus may have been habitable

August 11, 2016

Venus may have had a shallow liquid-water ocean and habitable surface temperatures for up to 2 billion years of its early history, according to computer modeling of the planet's ancient climate by scientists at NASA's Goddard ...

How do we colonize Mercury?

August 4, 2016

Humanity has long dreamed of establishing itself on other worlds, even before we started going into space. We've talked about colonizing the Moon, Mars, and even establishing ourselves on exoplanets in distant star systems. ...

The light and dark of Venus

February 21, 2008

Venus Express has revealed a planet of extraordinarily changeable and extremely large-scale weather. Bright hazes appear in a matter of days, reaching from the south pole to the low southern latitudes and disappearing just ...

How do we terraform Venus?

July 25, 2014

The planet Venus is often referred to as Earth's "Sister Planet", and rightly so. In addition to being almost the same size, Venus and Earth are similar in mass and have very similar compositions (both being terrestrial planets). ...

Venus has an ozone layer too: probe finds

October 6, 2011

( -- ESA's Venus Express spacecraft has discovered an ozone layer high in the atmosphere of Venus. Comparing its properties with those of the equivalent layers on Earth and Mars will help astronomers refine their ...

Recommended for you

STEREO—10 years of revolutionary solar views

October 26, 2016

Launched 10 years ago, on Oct. 25, 2006, the twin spacecraft of NASA's STEREO mission – short for Solar and Terrestrial Relations Observatory – have given us unprecedented views of the sun, including the first-ever simultaneous ...

Image: Changing colors in Saturn's pole

October 26, 2016

These two natural color images from NASA's Cassini spacecraft show the changing appearance of Saturn's north polar region between 2012 and 2016.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.