Researchers discover important tool in understanding differentiation in human embryonic stem cells

October 24, 2007

Researchers at the University of Minnesota’s Stem Cell Institute have described how an existing genetic tool can be used to study how human embryonic stem cells differentiate. The research appears in the November 2007 issue of Experimental Biology and Medicine.

Researchers know very little about how human embryonic stem cells (hESC) self-renew. To fully understand these cells’ self renewal capacity and pluripotency, and their regulation, it is necessary to efficiently generate genetically modified cells and analyze the consequences of elevated and reduced expression of genes.

The research team, led by the University of Minnesota’s Meri Firpo, Ph.D., included gene therapy researchers at Los Angeles Children’s Hospital, and developmental biologists at the University of Michigan.

The researchers used “knockdown” technology to reduce the expression of oct4, a gene known to be necessary for self renewal of mouse and human embryonic stem cells. As seen in work done with mouse cells by knockdown and other genetic means, they showed that reducing the amount of oct4 in human ES cells induced differentiation.

The researchers then used a plasmid vector to transiently increase levels of oct4 in hESC. This also resulted in differentiation as expected, but with differentiation patterns similar to those seen with the knockdown. This was an unexpected result, because when expression of oct4 is up-regulated in mouse ES cells, they differentiate into a different type of cell than if the expression of oct4 is down-regulated.

Source: Society for Experimental Biology and Medicine

Explore further: Deceptive model: Stem cells of humans and mice differ more strongly than suspected

Related Stories

A major step in making better stem cells from adult tissue

October 18, 2009

A team led by scientists from The Scripps Research Institute has developed a method that dramatically improves the efficiency of creating stem cells from human adult tissue, without the use of embryonic cells. The research ...

Explainer: What are stem cells?

May 20, 2013

In a paper published in Cell yesterday, scientists from the US and Thailand have, for the first time, successfully produced embryonic stem cells from human skin cells.

Progress being made in stem-cell therapy, scientist says

September 30, 2010

For the past two decades, scientists have been trying to fulfill the promise that stem-cell therapy holds for treating diseases such Parkinson’s, Alzheimer’s and many others. Their ultimate goal is to be able to remove ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.