Dilaton could affect abundance of dark matter particles

October 2, 2007

The amount of dark matter left over from the early universe may be less than previously believed. Research published in the open access journal PMC Physics A shows that the "relic abundance" of stable dark matter particles such as the neutralino may be reduced as compared to standard cosmology theories due to the effects of the "dilaton"', a particle with zero spin in the gravitational sector of strings.

Nikolaos Mavromatos of King's College London and colleagues in Athens and Texas obtained their result by studying a special "off-shell" time-dependent term (due to the dilaton) in the Boltzmann equation that describes the evolution of hot matter density as the Universe cooled down. "The formalism that this work used was developed in partial collaboration with John Ellis of CERN and Vasiliki Mitsou of IFIC, Valencia, and is a version of 'non-critical string theory'", said Mavromatos.

All the matter and radiation in the universe is thought to have been created by the Big Bang. The radiation stopped interacting with the matter some 400,000 years later -- when the universe had cooled down enough for electrons and protons to form hydrogen atoms. The density of dark matter particles such as the neutralino (a dark matter candidate favoured by many of the current "supersymmetric" approaches to particle physics) was therefore "frozen" at this time -- the so-called relic abundance.

The researchers say that the neutralino relic abundance is reduced by as much as a factor of ten in their models due to dilaton effects, as compared to standard cosmology theories. In contrast, the relic abundance of "ordinary" matter, which makes up stars, planets and humans, is only slightly diluted. The new model also agrees with the established model of nucleosynthesis (the way in which light elements were created during the first few minutes of the universe).

The new result is important for both cosmology and particle physics, says Mavromatos. Indeed, such non-equilibrium string cosmology models are on an equal footing with the standard cosmological cold dark matter model (called Lambda-CDM). For particle physics, the findings are relevant for future supersymmetric searches in colliders such as the Large Hadron Collider, due to come on-line at CERN early next year. The supersymmetric theory, one of the facets of string theory, postulates that every particle has a massive "shadow" particle partner.

Dark matter is fundamentally different from normal, luminous matter and is invisible to modern telescopes, giving off no light or heat. It appears to interact with normal matter only through gravity. Most cosmologists believe dark matter, currently thought to make up 95% of all matter in the universe, plays a crucial role in how large structures such as galaxies emerged after the Big Bang.

Citation: Dilaton and off-shell (non-critical string) effects in Boltzmann equation for species abundances, A.B. Lahanas et al. PMC Physics A (in press)

Source: BioMed Central

Explore further: A fresh perspective on an extraordinary cluster of galaxies

Related Stories

CAST explores the dark side of the universe

September 21, 2015

Over the next 10 days, CERN's Axion Solar Telescope (CAST) will receive the Sun's rays. The Sun's course is visible from the window in the CAST experimental hall just twice a year, in March and September. The scientists will ...

How we plan to bring dark matter to light

September 17, 2015

Long before we had the atomic theory of matter, scientists knew the air was real, even though it was invisible. This was because we could see its action as the wind caressed the leaves in trees.

Mysterious neutrinos take the stage at SLAC

September 24, 2015

Of all known fundamental particles, neutrinos may be the most mysterious: Although they are highly abundant in the universe and were discovered experimentally in 1956, researchers still have a lot left to learn about them. ...

Recommended for you

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...

Iron-gallium alloy shows promise as a power-generation device

September 29, 2015

An alloy first made nearly two decades ago by the U. S. Navy could provide an efficient new way to produce electricity. The material, dubbed Galfenol, consists of iron doped with the metal gallium. In new experiments, researchers ...

Extending a battery's lifetime with heat

October 1, 2015

Don't go sticking your electronic devices in a toaster oven just yet, but for a longer-lasting battery, you might someday heat them up when not in use. Over time, the electrodes inside a rechargeable battery cell can grow ...

Invisibility cloak might enhance efficiency of solar cells

September 30, 2015

Success of the energy turnaround will depend decisively on the extended use of renewable energy sources. However, their efficiency partly is much smaller than that of conventional energy sources. The efficiency of commercially ...

Scientists produce status check on quantum teleportation

September 30, 2015

Mention the word 'teleportation' and for many people it conjures up "Beam me up, Scottie" images of Captain James T Kirk. But in the last two decades quantum teleportation – transferring the quantum structure of an object ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Oct 02, 2007
It's incredible that people cling to ideas even after evidence is in.
not rated yet Oct 03, 2007

Your statement would be better received if you learned to spell the words "learn" and "science". :)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.