Dilaton could affect abundance of dark matter particles

October 2, 2007

The amount of dark matter left over from the early universe may be less than previously believed. Research published in the open access journal PMC Physics A shows that the "relic abundance" of stable dark matter particles such as the neutralino may be reduced as compared to standard cosmology theories due to the effects of the "dilaton"', a particle with zero spin in the gravitational sector of strings.

Nikolaos Mavromatos of King's College London and colleagues in Athens and Texas obtained their result by studying a special "off-shell" time-dependent term (due to the dilaton) in the Boltzmann equation that describes the evolution of hot matter density as the Universe cooled down. "The formalism that this work used was developed in partial collaboration with John Ellis of CERN and Vasiliki Mitsou of IFIC, Valencia, and is a version of 'non-critical string theory'", said Mavromatos.

All the matter and radiation in the universe is thought to have been created by the Big Bang. The radiation stopped interacting with the matter some 400,000 years later -- when the universe had cooled down enough for electrons and protons to form hydrogen atoms. The density of dark matter particles such as the neutralino (a dark matter candidate favoured by many of the current "supersymmetric" approaches to particle physics) was therefore "frozen" at this time -- the so-called relic abundance.

The researchers say that the neutralino relic abundance is reduced by as much as a factor of ten in their models due to dilaton effects, as compared to standard cosmology theories. In contrast, the relic abundance of "ordinary" matter, which makes up stars, planets and humans, is only slightly diluted. The new model also agrees with the established model of nucleosynthesis (the way in which light elements were created during the first few minutes of the universe).

The new result is important for both cosmology and particle physics, says Mavromatos. Indeed, such non-equilibrium string cosmology models are on an equal footing with the standard cosmological cold dark matter model (called Lambda-CDM). For particle physics, the findings are relevant for future supersymmetric searches in colliders such as the Large Hadron Collider, due to come on-line at CERN early next year. The supersymmetric theory, one of the facets of string theory, postulates that every particle has a massive "shadow" particle partner.

Dark matter is fundamentally different from normal, luminous matter and is invisible to modern telescopes, giving off no light or heat. It appears to interact with normal matter only through gravity. Most cosmologists believe dark matter, currently thought to make up 95% of all matter in the universe, plays a crucial role in how large structures such as galaxies emerged after the Big Bang.

Citation: Dilaton and off-shell (non-critical string) effects in Boltzmann equation for species abundances, A.B. Lahanas et al. PMC Physics A (in press)

Source: BioMed Central

Explore further: 100 years of relativity and enthusiasm for bringing science to public

Related Stories

Dark matter and particle acceleration in near space

November 9, 2015

Peering into darkness can strike fear into the hearts of some, but a new space telescope will soon peer into the darkness of "near space" (within a few thousand light years of Earth). Scientists are using the telescope to ...

Earth might have hairy dark matter

November 23, 2015

The solar system might be a lot hairier than we thought. A new study publishing this week in the Astrophysical Journal by Gary Prézeau of NASA's Jet Propulsion Laboratory, Pasadena, California, proposes the existence of ...

Dark matter dominates in nearby dwarf galaxy

November 18, 2015

Dark matter is called "dark" for a good reason. Although they outnumber particles of regular matter by more than a factor of 10, particles of dark matter are elusive. Their existence is inferred by their gravitational influence ...

Recommended for you

Test racetrack dipole magnet produces record 16 tesla field

November 30, 2015

A new world record has been broken by the CERN magnet group when their racetrack test magnet produced a 16.2 tesla (16.2T) peak field – nearly twice that produced by the current LHC dipoles and the highest ever for a dipole ...

Turbulence in bacterial cultures

November 30, 2015

Turbulent flows surround us, from complex cloud formations to rapidly flowing rivers. Populations of motile bacteria in liquid media can also exhibit patterns of collective motion that resemble turbulent flows, provided the ...

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Oct 02, 2007
It's incredible that people cling to ideas even after evidence is in.
not rated yet Oct 03, 2007

Your statement would be better received if you learned to spell the words "learn" and "science". :)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.