Compression of metallic glasses sheds light on phase transitions

October 12, 2007

Scientists at the U.S. Department of Energy's Argonne National Laboratory have identified an unusual variation in the compressibility of an unusual class of metals in research that may shed light on the electrodynamics of amorphous materials.

Using high-energy X-rays produced by Argonne's Advanced Photon Source (APS), researchers from Argonne, the Carnegie Institution of Washington and the International Center for New-Structured Materials at Zhejiang University discovered an unusual change in the bulk modulus of lanthanum/cerium-based bulk metallic glasses at a pressure of about 14 GPa, more than 100,000 times the pressure of Earth's atmosphere.

The bulk modulus of an object denotes how much its volume shrinks as the surrounding pressure increases; at pressures above 14 GPa, the samples began to shrink at slower rates than they had at pressures below the break.

This sudden change in compressibility may indicate the occurrence of an "amorphous-to-amorphous" phase transition in these types of materials. Amorphous solids, of which metallic glasses are one example, have long confounded scientists who seek to characterize them. Unlike crystalline solids, which possess a regular long-range atomic order, amorphous materials consist of atoms arranged rather randomly with only short-range order, making their behavior much harder to predict, said Argonne physicist Yang Ren, who worked on the project.

"It's very difficult to get an amorphous form for metals – they love to crystallize," said Guoyin Shen , another physicist on the project. "Just being able to synthesize a metallic glass larger than 10 millimeters is an accomplishment."

While scientists have an easy time detecting amorphous-to-crystalline phase transitions, like water freezing into ice, the natural disorder of the atomic structure of metallic glasses had precluded them from seeing amorphous-to-amorphous transitions until very recently.

Even those physicists who believe that they have observed an amorphous-to-amorphous transition have not yet explained the mechanisms that underlie the transformation, Ren explained. "We know quite a bit about phase transitions in crystalline materials, but for amorphous material it gets quite complicated. You have to ask, 'just how do you define a phase?'"

In order to answer this question and to explain the bulk modulus discontinuity, the researchers looked for the cause on the atomic level. Even if they are not visible to the naked eye, pressure-induced phase transitions in amorphous materials at high pressure often produce a change in the number of atoms that surround the central atom, known as the atom's coordination number.

However, the experiments at the High-Pressure Collaborative Access Team (HPCAT) APS beamline showed that no coordination change had occurred, leaving the research team with one other plausible explanation: the pressure engendered a sudden reconfiguration of the electrons that surround each atom in the material. "For decades," Shen said, "people have been able to study the long-range order in materials at high pressures, but we have now begun to study short-range order as well."

"If this kink is caused by electron reconfiguration," he said, "we can come up with a recipe that makes use of that type of change in the next phase of the research. This discovery is significant because it provides us with important information about how to work with a poorly understood, but widely used, class of materials."

Applications of bulk metallic glasses include recording heads, sensors and transducers, motors, sports equipment and power transformer cores. In general, the superior fracture strength and toughness, the excellent corrosion and wear resistance, and improved plasticity of bulk metallic glasses may lead to more applications in structural materials, electronic products, medical, defense and security systems in the future. The lanthanum/cerium-based metallic glass, due to its superplastic behavior at low temperatures, could be used for stamps, Shen said.

Results of the research, which was funded by DOE Office of Basic Energy Sciences, were published in the August 21 issue of the Proceedings of the National Academy of Sciences.

Source: Argonne National Laboratory

Explore further: Metallic glass gears make for graceful robots

Related Stories

New biomaterial for preventing uncontrolled bleeding

November 16, 2016

Small blood clots called emboli are mostly known for traveling through the vasculature before they lodge and obstruct vessels, impeding blood and oxygen supply to organs like the lung. To stop excessive bleeding or the flow ...

Changing semiconductor properties at room temperature

October 28, 2016

It's a small change that makes a big difference. Researchers have developed a method that uses a one-degree change in temperature to alter the color of light that a semiconductor emits. The method, which uses a thin-film ...

Recommended for you

Electron highway inside crystal

December 8, 2016

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their ...

Researchers improve qubit lifetime for quantum computers

December 8, 2016

An international team of scientists has succeeded in making further improvements to the lifetime of superconducting quantum circuits. An important prerequisite for the realization of high-performance quantum computers is ...

A nano-roundabout for light

December 8, 2016

Just like in normal road traffic, crossings are indispensable in optical signal processing. In order to avoid collisions, a clear traffic rule is required. A new method has now been developed at TU Wien to provide such a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.