Compression of metallic glasses sheds light on phase transitions

Oct 12, 2007

Scientists at the U.S. Department of Energy's Argonne National Laboratory have identified an unusual variation in the compressibility of an unusual class of metals in research that may shed light on the electrodynamics of amorphous materials.

Using high-energy X-rays produced by Argonne's Advanced Photon Source (APS), researchers from Argonne, the Carnegie Institution of Washington and the International Center for New-Structured Materials at Zhejiang University discovered an unusual change in the bulk modulus of lanthanum/cerium-based bulk metallic glasses at a pressure of about 14 GPa, more than 100,000 times the pressure of Earth's atmosphere.

The bulk modulus of an object denotes how much its volume shrinks as the surrounding pressure increases; at pressures above 14 GPa, the samples began to shrink at slower rates than they had at pressures below the break.

This sudden change in compressibility may indicate the occurrence of an "amorphous-to-amorphous" phase transition in these types of materials. Amorphous solids, of which metallic glasses are one example, have long confounded scientists who seek to characterize them. Unlike crystalline solids, which possess a regular long-range atomic order, amorphous materials consist of atoms arranged rather randomly with only short-range order, making their behavior much harder to predict, said Argonne physicist Yang Ren, who worked on the project.

"It's very difficult to get an amorphous form for metals – they love to crystallize," said Guoyin Shen , another physicist on the project. "Just being able to synthesize a metallic glass larger than 10 millimeters is an accomplishment."

While scientists have an easy time detecting amorphous-to-crystalline phase transitions, like water freezing into ice, the natural disorder of the atomic structure of metallic glasses had precluded them from seeing amorphous-to-amorphous transitions until very recently.

Even those physicists who believe that they have observed an amorphous-to-amorphous transition have not yet explained the mechanisms that underlie the transformation, Ren explained. "We know quite a bit about phase transitions in crystalline materials, but for amorphous material it gets quite complicated. You have to ask, 'just how do you define a phase?'"

In order to answer this question and to explain the bulk modulus discontinuity, the researchers looked for the cause on the atomic level. Even if they are not visible to the naked eye, pressure-induced phase transitions in amorphous materials at high pressure often produce a change in the number of atoms that surround the central atom, known as the atom's coordination number.

However, the experiments at the High-Pressure Collaborative Access Team (HPCAT) APS beamline showed that no coordination change had occurred, leaving the research team with one other plausible explanation: the pressure engendered a sudden reconfiguration of the electrons that surround each atom in the material. "For decades," Shen said, "people have been able to study the long-range order in materials at high pressures, but we have now begun to study short-range order as well."

"If this kink is caused by electron reconfiguration," he said, "we can come up with a recipe that makes use of that type of change in the next phase of the research. This discovery is significant because it provides us with important information about how to work with a poorly understood, but widely used, class of materials."

Applications of bulk metallic glasses include recording heads, sensors and transducers, motors, sports equipment and power transformer cores. In general, the superior fracture strength and toughness, the excellent corrosion and wear resistance, and improved plasticity of bulk metallic glasses may lead to more applications in structural materials, electronic products, medical, defense and security systems in the future. The lanthanum/cerium-based metallic glass, due to its superplastic behavior at low temperatures, could be used for stamps, Shen said.

Results of the research, which was funded by DOE Office of Basic Energy Sciences, were published in the August 21 issue of the Proceedings of the National Academy of Sciences.

Source: Argonne National Laboratory

Explore further: Team invents microscopic sonic screwdriver

Related Stories

Porous, layered material can serve as a graphene analog

May 19, 2015

An electrically conductive material, with layers resembling graphene (single sheet of graphite), was synthesized under mild conditions using a well-known molecule that allows good electronic coupling of nickel ...

Researchers exploring spintronics in graphene

May 06, 2015

Electronics is based on the manipulation of electrons and other charge carriers, but in addition to charge, electrons possess a property known as spin. When spin is manipulated with magnetic and electric ...

Two-dimensional material seems to disappear, but doesn't

May 05, 2015

(Phys.org)—When exposed to air, a luminescent 2D material called molybdenum telluride (MoTe2) appears to decompose within a couple days, losing its optical contrast and becoming virtually transparent. But when s ...

Recommended for you

Researchers prove magnetism can control heat, sound

19 hours ago

Phonons—the elemental particles that transmit both heat and sound—have magnetic properties, according to a landmark study supported by Ohio Supercomputer Center (OSC) services and recently published by ...

How researchers listen for gravitational waves

May 28, 2015

A century ago, Albert Einstein postulated the existence of gravitational waves in his General Theory of Relativity. But until now, these distortions of space-time have remained stubbornly hidden from direct ...

What's fair?: New theory on income inequality

May 27, 2015

The increasing inequality in income and wealth in recent years, together with excessive pay packages of CEOs in the U.S. and abroad, is of growing concern, especially to policy makers. Income inequality was ...

Scientists one step closer to mimicking gamma-ray bursts

May 27, 2015

Using ever more energetic lasers, Lawrence Livermore researchers have produced a record high number of electron-positron pairs, opening exciting opportunities to study extreme astrophysical processes, such ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.