Chemical compound found in tree bark stimulates growth, survival of brain cells

October 1, 2007

Researchers have identified a compound in tree bark that mimics the chemical reactions of a naturally occurring molecule in the brain responsible for stimulating neuronal cell signaling. Neuronal cell signaling plays a crucial role in the growth, plasticity and survival of brain cells.

The tree bark compound, known as gambogic amide, behaves much like Nerve Growth Factor (NGF), a molecule found in the brain. NGF binds to TrkA, a neuronal receptor, and activates neuronal signaling. It is known that the loss of TrkA density correlates with neuronal atrophy and severe cognitive impairment such as that associated with Alzheimer's disease.

Because gambogic amide also binds to TrKA and activates neuronal signaling, the researchers believe it may have potential as a therapeutic treatment in people affected by neurodegenerative disease, such as stroke, AlzheimerÕs disease and peripheral diabetic neuropathies.

Results of the study are published online in the Proceedings of the National Academy of Sciences and will be published in a future print edition.

The research was conducted by Emory University scientists Keqiang Ye, PhD, associate professor of pathology and laboratory medicine; first author Sung-Wuk Jang, PhD, and Masashi Okada, PhD, post-doctoral fellows in Dr. Ye's lab; Iqbal Sayeed, PhD, instructor; Donald Stein, PhD, Asa G. Candler Professor of Medicine; and Peng Jin, PhD, assistant professor of human genetics; and Dr. Ge Xiao at the Centers for Disease Control and Prevention.

Gambogic amide is derived from gambogic acid, a major ingredient of gamboges, a brownish-orange resin exuded from the Southeast Asian Garcinia hanburryi tree. The resin has been used in that area of the world for thousands of years to treat cancers without any reported toxicity to noncancerous cells.

"Humans actually have a naturally occurring molecule in the body, Nerve Growth Factor (NGF), which stimulates the growth and differentiation of certain types of nerve cells. However, NGF has poor pharmocokinetics and bioavailability when synthetically manufactured and used therapeutically, and it is also expensive to produce," Dr. Ye says.

"Previous research had focused on copying the chemical structure of NGF, but the cyclopeptide mimetics are not potent enough to use as a therapeutic agent. Instead, we decided that we needed to identify a more robust molecule that would pharmacologically mimic NGF's effect on brain cells by binding to TrkA. What we came up with was gambogic amide." Dr. Ye says.

The researchers are now conducting further pre-clinical research to investigate how the body processes gambogic amide and to confirm that it is in fact non-toxic.

Source: Emory University

Explore further: Scientists sniff out female mouse scents that make males frisky​​

Related Stories

Sensory illusion causes cells to self-destruct

November 19, 2015

Magic tricks work because they take advantage of the brain's sensory assumptions, tricking audiences into seeing phantoms or overlooking sleights of hand. Now a team of UC San Francisco researchers has discovered that even ...

Biologists find keys to driving a cockroach

October 22, 2015

Researchers at Case Western Reserve University have identified neurons in a cockroach's brain that control whether the insect walks slow or fast, turns right or left or downshifts to climb.

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Oct 02, 2007
QUOTE: the researchers believe it may have potential as a therapeutic treatment in people affected by neurodegenerative disease

In other words, the natural world automatically protects you against disease, whereas, the plastic and metal of the modern world is the root cause of disease.

Moreover, the body absorbs everything which is put upon it. The body can handle a great deal of ingested poison, however, poison which is put upon the flesh is much more likely to bring disease and suffering to the people.

Furthermore, living in the natural world is shown to preserve your mental ability, and increase your physical endurance.

Well, who knew eh?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.