Researchers explain cell response to skin-damaging UV rays

October 1, 2007

It’s well known that overexposure to ultraviolet rays from the sun can cause major skin problems, ranging from skin cancer to sunburns and premature wrinkles. A tan, for example, is nature’s own UV protection and an unhealthy sign that your skin is damaged.

But what is not so well known is exactly how UV rays specifically interact with your DNA and the complex organelles and proteins found inside every cell of your body.

Researchers at the University of Virginia Health System have published a new study that helps scientists around the world expand the body of knowledge on how cells protect themselves (or not) from DNA damage caused by UV rays.

Their study reveals part of a “simple switch” mechanism inside cells, triggered by UV exposure from the sun, that helps our cells survive and thrive after being exposed. This mechanism involves an unanticipated connection between several proteins in the cell, the researchers discovered.

Their findings, published in the September 7th online issue of the journal Cell, describe part of a pathway inside human cells that regulates when and how cells repair damage to their DNA when irradiated with UV rays. The research was conducted by Ian Macara, PhD, professor of microbiology at UVa’s Center for Cell Signaling, along with two MD/PhD students at UVa, Brandon Kremer and Laura Adang.

“When cells get DNA damage, normally they stop moving and stop responding to stimuli until they are repaired,” Macara explains. “We detail in this paper how a certain protein, called SOCS7, moves from the cytoplasm into the cell nucleus and essentially instructs the cell to stop dividing via a protein called NCK. The role of SOCS7 is both to stop outside signals from being relayed to the cell and to switch on the cell’s response to radiation damage. Cancer can arise if the repair work is not performed properly.”

The SOCS7 protein is known to be involved in the body’s insulin response to blood glucose levels, but Macara said he was surprised to find SOCS7 involved in the response to cellular DNA damage as well. Macara said it will now be important to study whether the absence of SOCS7 in cells would make a person more susceptible to skin cancer.

Source: University of Virginia Health System

Explore further: Research team refrigerates liquids with a laser for the first time

Related Stories

Novel technology vastly improves CRISPR/Cas9 accuracy

November 18, 2015

A new CRISPR/Cas9 technology developed by scientists at the University of Massachusetts Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target ...

Human gene prevents regeneration in zebrafish

November 18, 2015

Regenerative medicine could one day allow physicians to correct congenital deformities, regrow damaged fingers, or even mend a broken heart. But to do it, they will have to reckon with the body's own anti-cancer security ...

New method for imaging marmoset brains

November 19, 2015

Researchers at the RIKEN Brain Science Institute in Japan have developed a new system for imaging the activity of individual neurons in the marmoset brain. Published in Cell Reports, the study shows how amplifying genetically ...

Recommended for you

Amazon deforestation leaps 16 percent in 2015

November 28, 2015

Illegal logging and clearing of Brazil's Amazon rainforest increased 16 percent in the last year, the government said, in a setback to the aim of stopping destruction of the world's greatest forest by 2030.

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.