New research on structure of bones raises questions for treatment of osteoporosis

October 16, 2007

Researchers have discovered that the structure of human bones is vastly different than previously believed – findings which will have implications for how some debilitating bone disorders are treated.

Researchers from the University of Cambridge, the Animal Health Trust in Newmarket, and the BAM Federal Institute of Materials Research and Testing, Berlin, have discovered that the characteristic toughness and stiffness of bone is predominantly due to the presence of specialized sugars, not proteins, as had been previous believed. Their findings could have sweeping impacts on treatments for osteoporosis and other bone disorders.

Scientists have long held the view that collagen and other proteins were the key molecules responsible for stabilizing normal bone structure. That belief has been the basis for some existing medications for bone disorders and bone replacement materials. At the same time, researchers paid little attention to the roles of sugars (carbohydrates) in the complex process of bone growth.

For this research, funded by the Biotechnology and Biological Sciences Research Council (BBSRC), the UK and Berlin teams studied mineralization in horse bones using an analysis tool called nuclear magnetic resonance (NMR). They found that sugars, particularly proteoglycans (PGs) and glycosaminoglycans (GAGs), appear to play a role which is as important as proteins in controlling bone mineralization - the process by which newly-formed bone is hardened with minerals such as calcium phosphate.

Osteoporosis is a chronic and widespread disease in which mineral formation is disturbed, leading to brittle bones, pain, and increased fractures. Osteoarthritis, a hallmark of which is joint cartilage and GAG depletion, is also accompanied by abnormal bone mineralization. Both of these diseases can be debilitating, often crippling, to older people – a problem which will only intensify as our population ages. Among the young, especially sportsmen and women, bone and joint injuries prove the most intractable and are also the ones most likely to develop into afflictions (such as osteoarthritis) later in life.

Dr David Reid, from the Duer Group, Department of Chemistry,at the University of Cambridge, who played a significant part in the research, said, “We believe our findings will alter some fundamental preconceptions of bone biology. On a practical level they unveil novel targets for drug discovery for bone and joint diseases, new biomarkers for diagnosis, and new strategies for developing synthetic materials that could be used in orthopaedics.

“They may also strengthen the rationale for the current popularity of over-the-counter joint and bone pain remedies such as glucosamine and chondroitin, which are based on GAG sugar molecules.”

Source: University of Cambridge

Explore further: Making bone in the lab

Related Stories

Making bone in the lab

August 20, 2015

Every year there are around 60,000 hip, 50,000 forearm and 40,000 vertebral fractures in the UK. At the Bone and Joint Research Group at the University of Southampton, Professor Richard Oreffo and team have made pioneering ...

Open windows can be dangerous for cats

August 5, 2015

The summer months are dangerous for indoor cats. A large number of cats have accidents every year when they fall out of open windows or from balconies. Every year the University Clinic for Small Animals at the Vetmeduni Vienna ...

Countering pet obesity by rethinking feeding habits

July 30, 2015

190 million Americans share the luxuries of human life with their pets. Giving dogs and cats a place in human homes, beds and—sometimes even, their wills—comes with the family member package.

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.