New technique can be breakthrough for early cancer diagnosis

September 12, 2007

Early detection of disease is often critical to how successful treatment can be. Therefore, the development of new methods of diagnosis is a hot research field, where every small step is of great importance. In an article in the latest issue of Molecular & Cellular Proteomics, Uppsala University researchers describe a technique that the journal regards as especially interesting.

Proteins build up the body’s cells and tissues, and our knowledge of the human genome also entails that today’s scientists are aware of all of the proteins that our body can produce. It is known that many morbid conditions can be linked to changes in proteins, so it is important to enhance our knowledge of what proteins bind to each other, how they work together, and how processes are impacted by various disturbances.

In 2006 Ola Söderberg and his colleagues at the Department of Genetics and Pathology devised a new technique, in situ PLA (in situ proximity ligation assay), that could detect communication between proteins in cells. These researchers have now refined the method and can now see how proteins undergo change inside a cell.

“The method provides a better potential to truly understand how proteins function in the cell and can show what is wrong with a sick cell, as in cancer, for instance. The refined method has the potential to revolutionize cancer diagnostics, so there has been a great deal of interest in the method from the research community,” says Ola Söderberg.

The technique is more sensitive and more reliable than other available techniques in molecular diagnostics, and it has already started to be sold by the Uppsala company Olink, so there are high hopes that it will soon be used in health care.

Source: Uppsala University

Explore further: New form of mRNA regulation characterized

Related Stories

New form of mRNA regulation characterized

November 23, 2015

RNA, once thought to be a mere middleman between DNA and protein, is now recognized as the stage at which a host of regulatory processes can act to allow for flexibility in gene expression and thus the functions of cells ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Scientists create malaria-blocking mosquitoes

November 23, 2015

Using a groundbreaking gene editing technique, University of California scientists have created a strain of mosquitoes capable of rapidly introducing malaria-blocking genes into a mosquito population through its progeny, ...

Electric fields remove nanoparticles from blood with ease

November 23, 2015

Engineers at the University of California, San Diego developed a new technology that uses an oscillating electric field to easily and quickly isolate drug-delivery nanoparticles from blood. The technology could serve as a ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.