Splitting Water with Sunlight

September 25, 2007

Hydrogen is one of the most important fuels of the future, and the sun will be one of our most important sources of energy. Why not combine the two to produce hydrogen directly from solar energy without any detours involving electrical current? Why not use a process similar to the photosynthesis used by plants to convert sunlight directly into chemical energy?

Researchers from the German Max Planck Institute have now developed a catalyst that may do just that. As they report in the journal Angewandte Chemie, titanium disilicide splits water into hydrogen and oxygen. And the semiconductor doesn’t just act as a photocatalyst, it also stores the gases produced, which allows an elegant separation of hydrogen and oxygen.

“The generation of hydrogen and oxygen from water by means of semiconductors is an important contribution to the use of solar energy,” explains Martin Demuth (of the Max Planck Institute for Bioinorganic Chemistry in Mülheim an der Ruhr). “Semiconductors suitable for use as photocatalysts have been difficult to obtain, have unfavorable light-absorption characteristics, or decompose during the reaction.”

Demuth and his team have now proposed a class of semiconductors that have not been used for this purpose before: Silicides. For a semiconductor, titanium disilicide (TiSi2) has very unusual optoelectronic properties that are ideal for use in solar technology. In addition, this material absorbs light over a wide range of the solar spectrum, is easily obtained, and is inexpensive.

At the start of the reaction, a slight formation of oxide on the titanium disilicide results in the formation of the requisite catalytically active centers. “Our catalyst splits water with a higher efficiency than most of the other semiconductor systems that also operate using visible light,” says Demuth.

One aspect of this system that is particularly interesting is the simultaneous reversible storage of hydrogen. The storage capacity of titanium disilicide is smaller than the usual storage materials, but it is technically simpler. Most importantly, significantly lower temperatures are sufficient to release the stored hydrogen.

The oxygen is stored as well, but is released under different conditions than the hydrogen. It requires temperatures over 100°C and darkness. “This gives us an elegant method for the easy and clean separation of the gases,” explains Demuth. He and his German, American, and Norwegian partners have founded a company in Lörrach, Germany, for the further development and marketing of the proprietary processes.

Citation: Martin Demuth et al., A Titanium Disilicide Derived Semiconducting Catalyst for Water Splitting under Solar Radiation—Reversible Storage of Oxygen and Hydrogen, Angewandte Chemie International Edition 2007, 46, No. 41, 7770–7774, doi: 10.1002/anie.200701626

Source: Angewandte Chemie

Related Stories

Recommended for you

2016 climate trends continue to break records

July 19, 2016

Two key climate change indicators—global surface temperatures and Arctic sea ice extent—have broken numerous records through the first half of 2016, according to NASA analyses of ground-based observations and satellite ...

Historical records miss a fifth of global warming: NASA

July 22, 2016

A new NASA-led study finds that almost one-fifth of the global warming that has occurred in the past 150 years has been missed by historical records due to quirks in how global temperatures were recorded. The study explains ...

World's most sensitive dark matter detector completes search

July 21, 2016

The Large Underground Xenon (LUX) dark matter experiment, which operates beneath a mile of rock at the Sanford Underground Research Facility in the Black Hills of South Dakota, has completed its silent search for the missing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.