Sodium loses its luster: A liquid metal that's not really metallic

September 26, 2007
Sodium loses its luster: A liquid metal that's not really metallic
Unlike other solid metals, sodium melts differently when additional pressure is added. Image: Kwei-Yu Chu/LLNL

When melting sodium at high pressures, the material goes through a transition in which its electrical conductivity drops threefold. In a series of new calculations, Lawrence Livermore National Laboratory scientists describe the unusual melting behavior of dense sodium.

“We found that molten sodium undergoes a series of pressure-induced structural and electronic transitions similar to those observed in solid sodium but beginning at a much lower pressure,” said LLNL’s Eric Schwegler.

Schwegler and former colleagues Stanimir Bonev, now at Dalhousie University in Nova Scotia, and Jeans-Yves Raty at FNRS-University of Liège in Belgium report the new findings in the Sept. 27 edition of the journal, Nature.

Earlier experimental measurements of sodium’s melting curve have shown an unprecedented pressure-induced drop in melting temperature from 1,000 K at 30 GPa (30,000 atmospheres of pressure) down to room temperature at 120 GPa (120 million atmospheres of pressure).

Usually when a solid melts, its volume increases. In addition, when pressure is increased, it becomes increasingly difficult to melt a material.

However, sodium tells a different story.

As pressure is increased, liquid sodium initially evolves into a more compact local structure. In addition, a transition takes place at about 65 GPa that is associated with a threefold drop in electrical conductivity.

The researchers carried out a series of first-principle molecular dynamic simulations between 5 and 120 GPa and up to 1,500 K to investigate the structural and electronic changes in compressed sodium that are responsible for the shape of its unusual melting curve.

The team discovered that in addition to a rearrangement of the sodium atoms in the liquid under pressure, the electrons were transformed as well. The electronic cloud gets modified; the electrons sometimes get trapped in interstitial voids of the liquid and the bonds between atoms adopt specific directions.

“This behavior is totally new in a liquid as we usually expect that metals get more compact with pressure,” Raty said.

Source: Lawrence Livermore National Laboratory

Explore further: Electron anions impart unconventional properties in a unique cement semiconductor

Related Stories

New chemistries found for liquid batteries

March 22, 2016

Liquid metal batteries, invented by MIT professor Donald Sadoway and his students a decade ago, are a promising candidate for making renewable energy more practical. The batteries, which can store large amounts of energy ...

'Cold' Mars Could Have Harbored Liquid Water

June 1, 2009

( -- A new NASA study provides further evidence that Martian minerals dissolved in water could have kept that water from freezing, even on a cold, early Mars.

Ionic liquids to extract molecules from wood

October 26, 2015

Thanks to their unique properties, ionic liquids are all in the rage as solvents as, for instance, "green" sustainable chemical processes. Recently, two research teams at Umeå University discovered how enzymes can perform ...

Recommended for you

Scientists manipulate surfaces to make them invisible

October 21, 2016

Most lenses, objectives, eyeglass lenses, and lasers come with an anti-reflective coating. Unfortunately, this coating works optimally only within a narrow wavelength range. Scientists at the Max Planck Institute for Intelligent ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.