Scientists identify human source of stem cells with potential to repair muscle

September 4, 2007

For the first time, scientists at Children's Hospital of Pittsburgh of UPMC have discovered a unique population of adult stem cells derived from human muscle that could be used to treat muscle injuries and diseases such as heart attack and muscular dystrophy.

In a study using human muscle tissue, scientists in Children's Stem Cell Research Center - led by Johnny Huard, PhD, and Bruno Péault, PhD - isolated and characterized stem cells taken from blood vessels (known as myoendothelial cells) that are easily isolated using cell-sorting techniques, proliferate rapidly and can be differentiated in the laboratory into muscle, bone and cartilage cells.

These characteristics may make them ideally suited as a potential therapy for muscle injuries and diseases, according to Drs. Huard and Péault. Results of the study are published in the September issue of the journal Nature Biotechnology.

"Finding this population of stem cells in a human source represents a major breakthrough for us because it brings us much closer to a clinical application of this therapy," said Dr. Huard, the Henry J. Mankin Professor and vice chair for Research in the Department of Orthopaedic Surgery at the University of Pittsburgh School of Medicine. "To make this available as a therapy, we would take a muscle biopsy from a patient with a muscle injury or disease, remove the myoendothelial cells and treat the cells in the lab. The stem cells would then be re-injected into the patient to repair the muscle damage. Because this is an autologous transplant, meaning from the patient to himself, there is not the risk of rejection you would have if you took the stem cells from another source."

Working in dystrophic mice while searching for a cure for Duchenne muscular dystrophy (DMD), Dr. Huard's laboratory team first identified a unique population of muscle-derived stem cells with the ability to repair muscle 8 years ago.

Dr. Péault, a professor in the Department of Pediatrics, Cell Biology and Physiology at the University of Pittsburgh School of Medicine, recognized the importance of determining the origin of these muscle-derived stem cells. His team applied, among others, techniques of confocal microscopy and cell sorting by flow cytometry which led to the discovery in human muscle biopsies that these myoendothelial cells are located adjacent to the walls of blood vessels.

According to their study, myoendothelial cells taken from the blood vessels are much more efficient at forming muscle than other sources of stem cells known as satellite and endothelial cells.

A thousand myoendothelial cells transplanted into the injured skeletal muscle of immunodeficient mice produced, on average, 89 muscle fibers, compared with 9 and 5 muscle fibers for endothelial and satellite cells, respectively. Myoendothelial cells also showed no propensity to form tumors, a concern with other stem cell therapies.

Drs. Huard, Péault and colleagues in Children's Stem Cell Research Center (SCRC) are researching and developing numerous therapeutic uses for the population of stem cells the SCRC team identified. One of the most promising uses could be for the treatment of DMD, a genetic disease estimated to affect one in every 3,500 boys. Patients with DMD lack dystrophin, a protein that gives muscle cells structure.

Source: Children's Hospital of Pittsburgh

Explore further: Reprogramming the oocyte

Related Stories

Reprogramming the oocyte

August 26, 2015

(Phys.org)—Among other things, the egg is optimized to process the sperm genome. The cytoplasmic factors that make this possible also give the egg the ability to reprogram the nuclei from other kinds of cells if these nuclei ...

Researchers control embryonic stem cells with light

August 26, 2015

UC San Francisco researchers have for the first time developed a method to precisely control embryonic stem cell differentiation with beams of light, enabling them to be transformed into neurons in response to a precise external ...

How a single molecule turns one immune cell into another

July 30, 2015

All it takes is one molecule to reprogram an antibody-producing B cell into a scavenging macrophage. This transformation is possible, new evidence shows, because the molecule (C/EBPa, a transcription factor) "short-circuits" ...

Recommended for you

Just how good (or bad) is the fossil record of dinosaurs?

August 28, 2015

Everyone is excited by discoveries of new dinosaurs – or indeed any new fossil species. But a key question for palaeontologists is 'just how good is the fossil record?' Do we know fifty per cent of the species of dinosaurs ...

Smallest 3-D camera offers brain surgery innovation

August 28, 2015

To operate on the brain, doctors need to see fine details on a small scale. A tiny camera that could produce 3-D images from inside the brain would help surgeons see more intricacies of the tissue they are handling and lead ...

Fractals patterns in a drummer's music

August 28, 2015

Fractal patterns are profoundly human – at least in music. This is one of the findings of a team headed by researchers from the Max Planck Institute for Dynamics and Self-Organization in Göttingen and Harvard University ...

Smart home heating and cooling

August 28, 2015

Smart temperature-control devices—such as thermostats that learn and adjust to pre-programmed temperatures—are poised to increase comfort and save energy in homes.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.