A new look at the proton

September 25, 2007

Dutch researcher Paul van der Nat investigated more than three million collisions between electrons and protons. In his PhD thesis he demonstrates -- for the first time -- that the spin contribution of quarks to the proton can be studied by examining collisions in which two particles (hadrons) are produced.

The spin of a particle can most easily be compared to the rotating movement of a spinning top. In the HERMES experiment at the HERA particle accelerator in Hamburg, physicists are investigating how the spin of protons can be explained by the characteristics of their building blocks: quarks and gluons.

Van der Nat investigated a method to measure the contribution of the spin of the quarks to the total spin of the proton, independent of the contribution of the spin of the gluons.

For this a quark is shot out of the proton by an electron from the particle accelerator, as a result of which two hadrons are formed. The direction and amount of motion of these two hadrons is accurately measured. This method, which Van der Nat applied for the first time, turned out to be successful.

Spin is a characteristic property of particles, just like matter and electrical charge. Spin was discovered in 1925, by the Dutch physicists Goudsmit and Uhlenbeck. In 1987, scientists at CERN in Geneva discovered that only a small fraction of the proton's spin is caused by the spin of its constituent quarks.

The HERMES experiment was subsequently set up to find this missing quantity of spin, and has been running since 1995. It is expected that spin will play an increasingly important role in many applications. The MRI scanner is a well-known example of an application in which the spin of protons plays a key role.

Source: Netherlands Organization for Scientific Research

Explore further: Proton spin puzzle: Research reveals gluons make a significant contribution to spin

Related Stories

Spin Structure of Protons and Neutrons

October 10, 2005

Normally, we think of building blocks as static objects. For instance, the brick and mortar used to build the local bank remain pretty much the same from the day it's built to the day it's torn down. But the building blocks ...

Smashing polarized protons to uncover spin and other secrets

February 11, 2015

If you want to unravel the secrets of proton spin, put a "twist" in your colliding proton beams. This technique, tried and perfected at the Relativistic Heavy Ion Collider (RHIC)—a particle collider and U.S. Department ...

Recommended for you

Bubble nucleus discovered

October 27, 2016

Research conducted at the National Superconducting Cyclotron Laboratory at Michigan State University has shed new light on the structure of the nucleus, that tiny congregation of protons and neutrons found at the core of ...

Shocks in the early universe could be detectable today

October 27, 2016

(Phys.org)—Physicists have discovered a surprising consequence of a widely supported model of the early universe: according to the model, tiny cosmological perturbations produced shocks in the radiation fluid just a fraction ...

Neutrons prove the existence of 'spiral spin-liquid'

October 27, 2016

Magnetic moments ("spins") in magnetic solids are capable of forming the most diverse structures. Some of them are not only of interest from a scientific point of view, but also from a technical standpoint: processors and ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.