Nano Dandelions: Bundles of cysteine-lead nanowires spread into highly oriented structures

September 3, 2007

Under an electron microscope they look like dandelions. In the journal Angewandte Chemie, Xiao-Fang Shen and Xiu-Ping Yan explain their nanoscopic bouquets: They consist of spread-out bundles of nanowires made of lead and the amino acid l-cysteine. The Chinese researchers have discovered a new, cost-effective method by which ordered nanostructures can be produced on a large scale, at room temperature, and under atmospheric pressure.

The properties of nanomaterials are not determined exclusively by their chemical composition; other characteristics such as structure and morphology, as well as the form, size, and spatial distribution of the individual particles, also play a role.

It is equally important for the construction of future nanocomponents that nanomaterials can be produced with controlled “architecture”. For example, one-dimensional nanoobjects, known as nanowires, are needed for the (opto)electronics of the future and for the construction of superordinate structures.

Thanks to their specific structures and fascinating penchant for self-assembly, biomaterials make particularly interesting “molds” for the production of defined inorganic nanostructures. In particular, the amino acid cysteine easily forms coordination compounds with inorganic cations and metals.

The research team at Nankai University started with an aqueous solution of cysteine and lead acetate. At room temperature and under certain conditions, spindly bundles of nanowires form. These bundles spread out to form dandelion-like structures with a highly oriented morphology.

When heated under hydrothermal conditions, these structures decompose. Depending on the reaction conditions, hierarchical lead sulfide microstructures are formed with various attractive shapes, including spherical, needle-like, and different flower-like structures. Lead sulfide is an important semiconductor.

“Our new process enables the simple, controlled synthesis of nanowires and three-dimensional lead sulfide microstructures,” summarizes Yan. “In addition, we expect to gain new insights into the fundamental processes involved in mineralization, the transformation of bioorganic nano- and microstructures into inorganic structures. This process also occurs in living organisms, in which it plays an important role.”

Citation: Xiu-Ping Yan, Facile Shape-Controlled Synthesis of Well-Aligned Nanowire Architectures in Binary Aqueous Solution, Angewandte Chemie International Edition, doi: 10.1002/anie.200702451

Source: Angewandte Chemie

Explore further: Deep insights from surface reactions

Related Stories

Deep insights from surface reactions

November 30, 2016

Things that happen on the surface are often given short shrift compared to what goes on inside. But when it comes to chemical reactions, what occurs on the surface can mean the difference between a working material and one ...

Physicists develop new touchscreen technology

September 14, 2016

Physicists at the University of Sussex are at an advanced stage of developing alternative touchscreen technology to overcome the shortfall in the traditional display, phone and tablet material that relies on electrodes made ...

Recommended for you

Particles self-assemble into Archimedean tilings

December 8, 2016

(Phys.org)—For the first time, researchers have simulated particles that can spontaneously self-assemble into networks that form geometrical arrangements called Archimedean tilings. The key to realizing these structures ...

Protein disrupts infectious biofilms

December 8, 2016

Many infectious pathogens are difficult to treat because they develop into biofilms, layers of metabolically active but slowly growing bacteria embedded in a protective layer of slime, which are inherently more resistant ...

Electron highway inside crystal

December 8, 2016

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.