Molecules autonomously propelled by polymerizing DNA strands

September 6, 2007 By Lisa Zyga feature
Molecules autonomously propelled by polymerizing DNA strands
This 125 nm x 85 nm rectangular DNA origami (“A”) contains Rickettsia polymerization motors growing from closed-circle sites. Credit: Venkataraman, et al. ©2007 Nature.

Scientists from the California Institute of Technology have fabricated a motor that runs autonomously, and is powered only by the free energy of DNA hybridization. The molecular motor was inspired by bacterial pathogens such as Rickettsia rickettsii that propel themselves through host cells by polymerizing protein “comet tails.” The synthetic mimic operates by polymerizing a double-helical DNA tail out of metastable DNA hairpins (a pattern named for its 180-degree turn).

Representing the Departments of Bioengineering, Computer Science, Computation & Neural Systems, and Applied & Computational Mathematics at Caltech, researchers Suvir Venkataraman and colleagues have published their results in a recent issue of Nature Nanotechnology.

In contrast to previous synthetic molecular motors, the current motor is powered by non-covalent interactions and operates freely in solution without a substrate.

“Propulsive locomotion is achieved by harnessing a hybridization chain reaction (HCR), in which metastable DNA hairpins polymerize upon encountering a target molecule,” coauthor Niles Pierce told PhysOrg.com. “Strikingly, the propelled DNA strand remains firmly in contact with the growing polymer while performing successive handshakes with inserting hairpins.”

In geometric mimicry of Rickettsia’s comet tail, the researchers used atomic force microscopy to demonstrate patterned polymerization on one side of a rectangular DNA origami (a method of constructing nanoscale objects recently invented by coauthor Paul Rothemund). The researchers do not yet know whether the polymerization of nanoscale nucleic acid monomers can propel microscale objects freely through solution in more complete functional mimicry of Rickettsia.

“This study provides a proof of principle that DNA hybridization can be used to power autonomous molecular locomotion,” said Pierce. “Researchers at the NSF Center for Molecular Cybernetics, of which our team is a part, are now working to develop logical walkers that can work cooperatively and respond to their environment. It is possible that synthetic molecular motors may one day be routinely used in medicine, basic research, and manufacturing.”

Citation: Venkataraman, Suvir, Dirks, Robert M., Rothemund, Paul W. K., Winfree, Erik, and Pierce, Niles A. “An autonomous polymerization motor powered by DNA hybridization.” Nature Nanotechnology, Vol, 2, August 2007, 490-494.

Copyright 2007 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: DNA division can slow to a halt

Related Stories

DNA division can slow to a halt

September 1, 2015

A key mystery of the DNA replication process has been unraveled by researchers from King Abdullah University of Science and Technology (KAUST).

Molecular machine, not assembly line, assembles microtubules

August 20, 2015

When they think about how cells put together the molecules that make life work, biologists have tended to think of assembly lines: Add A to B, tack on C, and so on. But the reality might be more like a molecular version of ...

The protein problem

June 17, 2015

The importance of proteins is difficult to overstate; they play a critical role in countless biological processes. An enhanced understanding of their structure and function is essential to advancing the state of the art in ...

Relaxation helps pack DNA into a virus

May 26, 2014

Researchers at the University of California, San Diego have found that DNA packs more easily into the tight confines of a virus when given a chance to relax, they report in a pair of papers to be published in in the early ...

Recommended for you

Making nanowires from protein and DNA

September 3, 2015

The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago. For example, synthetic structures made of DNA could one day be ...

Graphene made superconductive by doping with lithium atoms

September 2, 2015

(Phys.org)—A team of researchers from Germany and Canada has found a way to make graphene superconductive—by doping it with lithium atoms. In their paper they have uploaded to the preprint server arXiv, the team describes ...

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.