Molecules autonomously propelled by polymerizing DNA strands

September 6, 2007 By Lisa Zyga feature
Molecules autonomously propelled by polymerizing DNA strands
This 125 nm x 85 nm rectangular DNA origami (“A”) contains Rickettsia polymerization motors growing from closed-circle sites. Credit: Venkataraman, et al. ©2007 Nature.

Scientists from the California Institute of Technology have fabricated a motor that runs autonomously, and is powered only by the free energy of DNA hybridization. The molecular motor was inspired by bacterial pathogens such as Rickettsia rickettsii that propel themselves through host cells by polymerizing protein “comet tails.” The synthetic mimic operates by polymerizing a double-helical DNA tail out of metastable DNA hairpins (a pattern named for its 180-degree turn).

Representing the Departments of Bioengineering, Computer Science, Computation & Neural Systems, and Applied & Computational Mathematics at Caltech, researchers Suvir Venkataraman and colleagues have published their results in a recent issue of Nature Nanotechnology.

In contrast to previous synthetic molecular motors, the current motor is powered by non-covalent interactions and operates freely in solution without a substrate.

“Propulsive locomotion is achieved by harnessing a hybridization chain reaction (HCR), in which metastable DNA hairpins polymerize upon encountering a target molecule,” coauthor Niles Pierce told PhysOrg.com. “Strikingly, the propelled DNA strand remains firmly in contact with the growing polymer while performing successive handshakes with inserting hairpins.”

In geometric mimicry of Rickettsia’s comet tail, the researchers used atomic force microscopy to demonstrate patterned polymerization on one side of a rectangular DNA origami (a method of constructing nanoscale objects recently invented by coauthor Paul Rothemund). The researchers do not yet know whether the polymerization of nanoscale nucleic acid monomers can propel microscale objects freely through solution in more complete functional mimicry of Rickettsia.

“This study provides a proof of principle that DNA hybridization can be used to power autonomous molecular locomotion,” said Pierce. “Researchers at the NSF Center for Molecular Cybernetics, of which our team is a part, are now working to develop logical walkers that can work cooperatively and respond to their environment. It is possible that synthetic molecular motors may one day be routinely used in medicine, basic research, and manufacturing.”

Citation: Venkataraman, Suvir, Dirks, Robert M., Rothemund, Paul W. K., Winfree, Erik, and Pierce, Niles A. “An autonomous polymerization motor powered by DNA hybridization.” Nature Nanotechnology, Vol, 2, August 2007, 490-494.

Copyright 2007 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: Tumble-proof cargo transporter in biological cells

Related Stories

Tumble-proof cargo transporter in biological cells

April 12, 2016

ver wondered how a molecular nanomotor works when repairing DNA or transporting material such as organelles in the cell? Typically, nanomotors move along biopolymer filaments to go about their duties in the cell.  To do ...

Nano-hinge—lubricated by light

February 24, 2016

Nanomachines could take over a variety of tasks in future. Some day they may be able to perform medical precision work in the human body or help analyze pathogens and pollutants in mobile laboratories. Scientists at the Max ...

Relaxation helps pack DNA into a virus

May 26, 2014

Researchers at the University of California, San Diego have found that DNA packs more easily into the tight confines of a virus when given a chance to relax, they report in a pair of papers to be published in in the early ...

Recommended for you

Personal cooling units on the horizon

April 28, 2016

Firefighters entering burning buildings, athletes competing in the broiling sun and workers in foundries may eventually be able to carry their own, lightweight cooling units with them, thanks to a nanowire array that cools, ...

Little ANTs: Researchers build the world's tiniest engine

May 2, 2016

Researchers have developed the world's tiniest engine - just a few billionths of a metre in size - which uses light to power itself. The nanoscale engine, developed by researchers at the University of Cambridge, could form ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.