New Method of Studying Ancient Fossils Points to Carbon Dioxide As a Driver of Global Warming

September 17, 2007

A team of American and Canadian scientists has devised a new way to study Earth's past climate by analyzing the chemical composition of ancient marine fossils. The first published tests with the method further support the view that atmospheric CO2 has contributed to dramatic climate variations in the past, and strengthen projections that human CO2 emissions could cause global warming.

In the current issue of the journal Nature, geologists and environmental scientists from the California Institute of Technology, the University of Ottawa, the Memorial University of Newfoundland, Brock University, and the Waquoit Bay National Estuarine Research Reserve report the results of a new method for determining the growth temperatures of carbonate fossils such as shells and corals. This method looks at the percentage of rare isotopes of oxygen and carbon that bond with each other rather than being randomly distributed through their mineral lattices.

Because these bonds between oxygen-18 and carbon-13 form in greater abundance at low temperatures and lesser abundance at higher temperatures, a precise measurement of their concentration in a carbonate fossil can quantify the temperature of seawater in which the organisms lived. By comparing this record of temperature change with previous estimates of past atmospheric CO2 concentrations, the study demonstrates a strong coupling of atmospheric temperatures and carbon dioxide concentrations across one of Earth's major environmental shifts.

According to Rosemarie Came, a postdoctoral scholar in geochemistry at Caltech and lead author of the article, only about 60 parts per million of the carbonate molecular groups that make up the mineral structures of carbonate fossils are a combination of both oxygen-18 and carbon-13, but the amount varies predictably with temperature. Therefore, knowing the age of the sample and how much of these exotic carbonate groups are present allows one to create a record of the planet's temperature through time.

"This clumped-isotope method has an advantage over previous approaches because we're looking at the distribution of rare isotopes inside a single shell or coral," Came says. "All the information needed to study the surface temperature at the time the animal lived is stored in the fossil itself."

In this way, the method contrasts with previous approaches that require knowledge of the chemistry of seawater in the distant past--something that is poorly known.

The study contrasts the growth temperatures of fossils from two times in the distant geological past. The Silurian period, approximately 400 million years ago, is thought to have been a time of highly elevated atmospheric CO2 (more than 10 times the modern concentration), and was found by the researchers to be a time of exceptionally warm shallow-ocean temperatures--nearly 35 degrees C. In contrast, the Carboniferous period, roughly 300 million years ago, appears to have been characterized by far lower levels of atmospheric carbon dioxide (similar to modern values) and had shallow marine temperatures similar to or slightly cooler than today-about 25 degrees C. Thus, the draw-down of atmospheric CO2 coincided with strong global cooling.

"This is a huge change in temperature," says John Eiler, a professor of geochemistry at Caltech and a coauthor of the study. "It shows that carbon dioxide really has been a powerful driver of climate change in Earth's past."

The title of the Nature paper is "Coupling of surface temperatures and atmospheric CO2 concentrations during the Paleozoic era." The other authors are Jan Veizer of the University of Ottawa, Karem Azmy of Memorial University of Newfoundland, Uwe Brand of Brock University, and Christopher R. Weidman of the Waquoit National Estuarine Research Reserve, Massachusetts.

Source: Caltech

Explore further: Existing crop models can forecast yield in uncertain climate conditions

Related Stories

Saving Louisiana's coast

August 27, 2015

It was Day Nine after Katrina struck in 2005 when Sarah Mack's bosses at the Sewerage and Water Board of New Orleans called her back to work.

The gas giant Jupiter

August 26, 2015

Ever since the invention of the telescope four hundred years ago, astronomers have been fascinated by the gas giant known as Jupiter. Between it's constant, swirling clouds, its many, many moons, and its red spot, there are ...

Earth's extremes point the way to extraterrestrial life

August 26, 2015

Bizarre creatures that go years without water. Others that can survive the vacuum of open space. Some of the most unusual organisms found on Earth provide insights for Washington State University planetary scientist Dirk ...

Cracking open diamonds for messages from the deep earth

August 25, 2015

Geochemist Yaakov Weiss deals in diamonds. Not the brilliant jewelry-store kind, but the flawed, dirty-looking ones used more for industry than decoration. Gem-grade diamonds are generally pure crystallized carbon, ...

Recommended for you

New Horizons team selects potential Kuiper Belt flyby target

August 29, 2015

NASA has selected the potential next destination for the New Horizons mission to visit after its historic July 14 flyby of the Pluto system. The destination is a small Kuiper Belt object (KBO) known as 2014 MU69 that orbits ...

Interactive tool lifts veil on the cost of nuclear energy

August 24, 2015

Despite the ever-changing landscape of energy economics, subject to the influence of new technologies and geopolitics, a new tool promises to root discussions about the cost of nuclear energy in hard evidence rather than ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.