'Hot' ice could lead to medical device

September 25, 2007
'Hot' ice could lead to medical device
Doctoral student Alexander Wissner-Gross (above) and Efthimios Kaxiras, Gordon McKay Professor of Applied Physics, have shown that treated diamond coatings can keep water frozen at body temperature. Photo: Stephanie Mitchell/Harvard University

Harvard physicists have shown that specially treated diamond coatings can keep water frozen at body temperature, a finding that may have applications in future medical implants.

Doctoral student Alexander Wissner-Gross and Efthimios Kaxiras, physics professor and Gordon McKay Professor of Applied Physics, spent a year building and examining computer models that showed that a layer of diamond coated with sodium atoms will keep water frozen up to 108 degrees Fahrenheit.

In ice, water molecules are arranged in a rigid framework that gives the substance its hardness. The process of melting is somewhat like a building falling down: pieces that had been arranged into a rigid structure move and flow against one another, becoming liquid water.

The computer model shows that whenever a water molecule near the diamond-sodium surface starts to fall out of place, the surface stabilizes it and reassembles the crystalline ice structure.

Simulations show that the process works only for layers of ice so thin they’re just a few molecules wide — three nanometers at room temperature and two nanometers at body temperature. A nanometer is a billionth of a meter.

The layer should be thick enough to form a biologically compatible shield over the diamond surface and to make diamond coatings more useful in medical devices, Wissner-Gross said.

The work is not the first showing that water can freeze at high temperatures. Dutch scientists had shown previously that ice can form at room temperature if placed between a tiny tungsten tip and a graphite surface. Kaxiras and Wissner-Gross’s work shows that ice can be maintained over a large area at body temperature and pressure.

Device manufacturers have been considering using diamond coatings in medical implants because of their hardness. Concerns have been raised, however, because the coatings are difficult to get absolutely smooth, abrasion of the tissue surrounding the implant could result, and that diamond might have a higher chance of causing blood clots than other materials.

Wissner-Gross said a two-nanometer layer of ice would just fill the pits in the diamond surface, smoothing it out and discouraging clotting proteins from attaching to the surface.

“It should be just soft enough and water-friendly enough to smooth out diamond’s disadvantages,” Wissner-Gross said.

Wissner-Gross and Kaxiras are planning experiments to confirm the computerized findings in the real world. Wissner-Gross said they expect results within a year.

“We’re reasonably confident we’ll be able to realize the effect experimentally,” Wissner-Gross said.

Wissner-Gross, who has been a doctoral student at Harvard since 2003, said the research grew out of an interest in the physical interaction of nanostructured surfaces with molecules that are biologically relevant, such as water. Diamond films are growing cheaper, Wissner-Gross said, and as their cost declines the array of possible uses of the material grows wider.

“We both had this notion that it would be very interesting to combine theory with respect to diamond surfaces with what’s going on in cryobiology,” Wissner-Gross said. “We were thinking about how we could leverage this long-term trend [of declining prices] to do something interesting in the medical field.”

The work has won Wissner-Gross the 2007 Dan David Prize Scholarship from Tel Aviv University and the 2007 Graduate Student Silver Award from the Materials Research Society.

Wissner-Gross, who expects to graduate in June 2008, said he plans to continue work not only on this project, but on other efforts concerning the physics of surfaces that have novel properties.

Source: Harvard University, by Alvin Powell

Related Stories

Recommended for you

For faster battery charging, try a quantum battery?

August 3, 2015

(Phys.org)—Physicists have shown that a quantum battery—basically, a quantum system such as a qubit that stores energy in its quantum states—can theoretically be charged at a faster rate than conventional batteries. ...

Magnetism at nanoscale

August 3, 2015

As the demand grows for ever smaller, smarter electronics, so does the demand for understanding materials' behavior at ever smaller scales. Physicists at the U.S. Department of Energy's Ames Laboratory are building a unique ...

Study calculates the speed of ice formation

August 3, 2015

Researchers at Princeton University have for the first time directly calculated the rate at which water crystallizes into ice in a realistic computer model of water molecules. The simulations, which were carried out on supercomputers, ...

Small tilt in magnets makes them viable memory chips

August 3, 2015

University of California, Berkeley, researchers have discovered a new way to switch the polarization of nanomagnets, paving the way for high-density storage to move from hard disks onto integrated circuits.

Scientists bring order, and color, to microparticles

August 3, 2015

A team of New York University scientists has developed a technique that prompts microparticles to form ordered structures in a variety of materials. The advance, which appears in the Journal of the American Chemical Society ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.