Using evolution, scientists create a template for many new therapeutic agents

Sep 09, 2007

By guiding an enzyme down a new evolutionary pathway, a team of University of Wisconsin-Madison researchers has created a new form of an enzyme capable of producing a range of potential new therapeutic agents with anticancer and antibiotic properties.

Writing in the current issue (Sept. 9, 2007) of the journal Nature Chemical Biology, a team of researchers from the UW-Madison School of Pharmacy describes a novel enzyme capable of changing the chemical properties of a variety of existing drugs and small molecules to make new agents to treat cancer and fight infection.

"We're finding this enzyme glycosylates all sorts of molecules," says Jon Thorson, a UW-Madison professor of pharmaceutical sciences describing the process of adding natural sugar molecules to other chemical molecules to enhance their biological effects.

The newly evolved enzyme developed by Thorson and colleagues Gavin. J. Williams and Changsheng Zhang, according to Thorson, is akin to a "Swiss Army enzyme," a catalyst that can decorate many different chemical molecules with all sorts of sugars to alter their biological effects.

Enzymes are proteins that act as catalysts across biology, from single-celled organisms to humans. They promote chemical reactions in cells and are used widely in industry for everything from making beer and cheese to producing paper and biofuel.

They are also important for making so-called natural drugs, therapeutic agents based on the blueprints of chemicals produced in nature by plants and microorganisms. Such natural sugar-bearing chemicals are the basis for some of medicine's most potent antibiotics and anticancer drugs as exemplified by the antibiotic erythromycin and the anticancer drug doxorubicin.

Important chemical features of such drugs are natural sugars, molecules that often determine a chemical compound's biological effects. Although scientists can sometimes manipulate how sugars are added or subtracted to a chemical molecule to alter its therapeutic properties, it is difficult and not always possible to routinely modify them to enhance their beneficial effects.

The new enzyme was created by generating random mutations in genes that make a naturally occurring enzyme. The altered genes were then put into a bacterium, which fabricated a series of randomly mutated new enzymes. These enzyme variants were then tested in a high throughput screen where chemical molecules engineered to fluoresce stop glowing when a sugar is successfully attached.

"We're transferring the sugar to a beacon," Thorson explains. "When you attach a sugar, you shut off the fluorescence."

The development of the screen, according to Thorson, was critical, overcoming a key limitation in the glycosyltransferase field.

"We're assaying hundreds of very interesting drug-like molecules now with newly evolved glycosyltransferases. The ability to rapidly evolve these enzymes has opened a lot of doors."

The range of potential therapeutic agents that might be generated with the new technology includes important anti-inflammatory and anti-cancer compounds, and antibiotics.

What's more, the work could lead to the creation of a "super bug," an engineered bacterium that can perform the entire process in a laboratory dish: "There's no doubt that this is going to work in vivo," says Thorson. "We can create a bug where you feed it sugars and the compounds you want to hang those sugars on" to arrive at new medicines.

Source: University of Wisconsin-Madison

Explore further: Researchers discover new mechanism of DNA repair

Related Stories

What makes fireflies glow?

12 hours ago

As fireflies are delighting children across the country with their nighttime displays, scientists are closing in on a better understanding of how the insects produce their enchanting glow. They report in ...

Future biosensors could be woven into clothes

Jun 23, 2015

Commonly used health tests, such as pregnancy and blood sugar tests, involve putting a drop of fluid on a test strip, which is infused with a substance designed to detect a specific molecule.

Recommended for you

Researchers discover new mechanism of DNA repair

Jul 03, 2015

The DNA molecule is chemically unstable giving rise to DNA lesions of different nature. That is why DNA damage detection, signaling and repair, collectively known as the DNA damage response, are needed.

The math of shark skin

Jul 03, 2015

"Sharks are almost perfectly evolved animals. We can learn a lot from studying them," says Emory mathematician Alessandro Veneziani.

Cuban, US scientists bond over big sharks

Jul 03, 2015

Somewhere in the North Atlantic right now, a longfin mako shark—a cousin of the storied great white—is cruising around, oblivious to the yellow satellite tag on its dorsal fin.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.