Solving a Dragonfly Flight Mystery

September 24, 2007

Dragonflies adjust their wing motion while hovering to conserve energy, according to a Cornell University study of the insect's flight mechanics. The revelation contradicts previous speculation that the change in wing motion served to enhance vertical lift.

The Cornell physicists came to their conclusions after analyzing high speed images of dragonflies in action. The insects have two pairs of wings, which sometimes move up and down in harmony. At other times the front set of wings flap out of sync with the back set.

The physicists found that dragonflies maximized their lift, when accelerating or taking off from a perch, by flapping both sets of wings together. When they hover, however, the rear wings flap at the same rate as the front, but with a different phase (imagine two people clapping at the same speed, but with one person's clap delayed relative to the other).

The physicists' analysis of the out-of-sync motion showed that while it didn't help with lift, it minimized the amount of power they had to expend to stay airborne, allowing them to conserve energy while hovering in place.

Citation: Z. Jane Wang and David Russell, Physical Review Letters, forthcoming article

Source: American Physical Society

Explore further: Dragonflies on the hunt display complex choreography

Related Stories

Dragonflies on the hunt display complex choreography

December 10, 2014

The dragonfly is a swift and efficient hunter. Once it spots its prey, it takes about half a second to swoop beneath an unsuspecting insect and snatch it from the air. Scientists at the Howard Hughes Medical Institute's Janelia ...

Scientist uses dragonflies to better understand flight

February 20, 2006

If mastering flight is your goal, you can't do better than to emulate a dragonfly. With four wings instead of the standard two and an unusual pitching stroke that allows the bug to hover and even shift into reverse, the slender, ...

Recommended for you

Magnetism at nanoscale

August 3, 2015

As the demand grows for ever smaller, smarter electronics, so does the demand for understanding materials' behavior at ever smaller scales. Physicists at the U.S. Department of Energy's Ames Laboratory are building a unique ...

Study calculates the speed of ice formation

August 3, 2015

Researchers at Princeton University have for the first time directly calculated the rate at which water crystallizes into ice in a realistic computer model of water molecules. The simulations, which were carried out on supercomputers, ...

Small tilt in magnets makes them viable memory chips

August 3, 2015

University of California, Berkeley, researchers have discovered a new way to switch the polarization of nanomagnets, paving the way for high-density storage to move from hard disks onto integrated circuits.

Scientists bring order, and color, to microparticles

August 3, 2015

A team of New York University scientists has developed a technique that prompts microparticles to form ordered structures in a variety of materials. The advance, which appears in the Journal of the American Chemical Society ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.