Water forms floating 'bridge' when exposed to high voltage

September 28, 2007 By Lisa Zyga feature
Water forms floating 'bridge' when exposed to high voltage
When water in two beakers is exposed to a high voltage, a floating water bridge forms between the beakers. Credit: Elmar Fuchs, et al.

While it's one of the most important and abundant chemical compounds on Earth, water is still a puzzle to scientists. Much research has been done to uncover the structure of water beyond the H2O scale, which is thought to be responsible for many of water’s unique properties. However, the nature of this structure, governed by hydrogen bonds, is currently unknown.

“Water undoubtedly is the most important chemical substance in the world,” explained Elmar Fuchs and colleagues from the Graz University of Technology in Austria in a recent study. “The interaction of water with electric fields has been intensely explored over the last years. We report another unusual effect of liquid water exposed to a dc electric field: the floating water bridge.”

When exposed to a high-voltage electric field, water in two beakers climbs out of the beakers and crosses empty space to meet, forming the water bridge. The liquid bridge, hovering in space, appears to the human eye to defy gravity.

Upon investigating the phenomenon, the scientists found that water was being transported from one beaker to another, usually from the anode beaker to the cathode beaker. The cylindrical water bridge, with a diameter of 1-3 mm, could remain intact when the beakers were pulled apart at a distance of up to 25 mm.

Why water would act this way was a surprise, Fuchs told PhysOrg.com. But the group’s analyses have shown that the explanation may lie within the nature of the water’s structure. Initially, the bridge forms due to electrostatic charges on the surface of the water. The electric field then concentrates inside the water, arranging the water molecules to form a highly ordered microstructure. This microstructure remains stable, keeping the bridge intact.

The scientists reached the microstructure hypothesis after observing that the density of the water changes between the beaker edges and the center of the bridge. A microstructure consisting of an arrangement of water molecules could have a similar density variation.

In their experiments, the scientists also discovered the existence of high frequency oscillations inside the bridge, and they observed corresponding inner structures with a high-speed camera and visualization system. Unlike the much slower surfaces waves, these high frequency oscillations weren’t caused by surface tension. Rather, the scientists predict that the oscillating structures were triggered by the waviness of the voltage supply itself.

The researchers noticed a pattern with the inner structures: every experiment started with a single inner structure, which then decayed into additional structures after a few minutes of operation. The group thought that this decay might be caused by either dust contamination or the increasing temperature of the water bridge under the electric field. As the water temperature increased from 20 degrees Celsius to more than 60 degrees Celsius—which took about 45 minutes—the bridge collapsed.

The scientists explain that the unusual effect of the floating water bridge, as well as the microstructures they observed during the interaction of water with electric fields, could be another piece to the puzzle of the structure of water. The group said that they are currently investigating how highly ordered microstructures may explain the density change in the water bridge, with the results to appear in a future publication.

Citation: Fuchs, Elmar C., Woisetschläger, Jakob, Gatterer, Karl, Maier, Eugen, Pecnik, René, Holler, Gert, and Eisenkölbl, Helmut. “The floating water bridge.” J. Phys. D: Appl. Phys. 40 (2007) 6112-6114.

Copyright 2007 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: New biomaterial developed for injectable neuronal control

Related Stories

New biomaterial developed for injectable neuronal control

July 1, 2016

In the campy 1966 science fiction movie "Fantastic Voyage," scientists miniaturize a submarine with themselves inside and travel through the body of a colleague to break up a potentially fatal blood clot. Right. Micro-humans ...

Discovering soil-less farming

June 2, 2016

As the world's population continues to climb, the climate continues to change, and issues of water and food scarcity arise, interest in alternative farming mechanisms is growing. Jiyoo Jye, M.Des. '16, a recent graduate of ...

Healthy cities, happy Mondays (and every day)

June 13, 2016

Life in towns and cities can grind you down, but putting health and wellbeing at the centre of new housing and infrastructure developments could make for happier, healthier citizens.

Recommended for you

Weird quantum effects stretch across hundreds of miles

July 19, 2016

In the world of quantum, infinitesimally small particles, weird and often logic-defying behaviors abound. Perhaps the strangest of these is the idea of superposition, in which objects can exist simultaneously in two or more ...

Light-bulb moment for stock market behaviour

July 21, 2016

University of Adelaide physicists have discovered that the timing of electronic orders on the stock market can be mathematically described in the same way as the lifetime of a light bulb.

Mapping electromagnetic waveforms

July 22, 2016

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.