Bone-growing nanomaterial could improve orthopaedic implants

September 17, 2007
Growing Nanotubes on Titanium
Anodized titanium covered by carbon nanotubes could lead to a new material for orthopedic implants. Credit: Sirinrath Sirivisoot/Brown University

For orthopaedic implants to be successful, bone must meld to the metal that these artificial hips, knees and shoulders are made of. A team of Brown University engineers, led by Thomas Webster, has discovered a new material that could significantly increase this success rate.

The team took titanium – the most popular implant material around – and chemically treated it and applied an electrical current to it. This process, called anodization, creates a pitted coating in the surface of the titanium. Webster and his team packed those pits with a cobalt catalyst and then ran the samples through a chemical process that involved heating them to a scorching 700° C. That caused carbon nanotubes to sprout from each pit.

Researchers then placed human osteoblasts, or bone-forming cells, onto the nanotube-covered samples as well as onto samples of plain and anodized titanium. The samples were placed in an incubator. After three weeks, the team found that the bone cells grew twice as fast on the titanium covered in nanotubes. Cells interacting with the nanotubes also made significantly more calcium – the essential ingredient for healthy bones.

Results are published in Nanotechnology.

“What we found is possibly a terrific new material for joint replacement and other implants,” said Webster, associate professor of engineering at Brown. “Right now, bone doesn’t always properly meld to implants. Osteoblasts don’t grow or grow fast enough. Adding carbon nanotubes to anodized titanium appears to encourage that cell growth and function.”

Webster’s long-term vision for the new material is ambitious. With it, Webster hopes to create a new class of implants – ones that can sense bone growth then send that information to an external device. Doctors could monitor the output and determine whether to inject growth hormones or otherwise intervene to avoid additional surgery. Right now, implant patients must get an X-ray or undergo a bone scan to monitor bone growth.

Webster thinks these “biosensing” implants could even be designed to detect infection and be specially coated to release antibiotics or other drugs into the body.

Webster said the biosensing concept would work because when cells make calcium, an electrical current is created. That current can be conducted through carbon nanotubes and transmitted via radio frequency to a handheld device outside the body – a similar process to the one employed by state-of-the-art cardiac pacemakers.

“This technology would be incredibly exciting,” Webster said. “It could significantly improve patient health – and cut down on expensive diagnostic tests and surgery. We still have a long way to go to make an intelligent implant a reality, but our new results are a strong first step.”

Source: Brown University

Explore further: Nanotubes that Heal: Engineering Better Orthopedic Implants

Related Stories

Nanotubes that Heal: Engineering Better Orthopedic Implants

May 18, 2010

(PhysOrg.com) -- Titanium and its alloys have a leg up on all other materials used to make the orthopedic implants used by surgeons to repair damaged bones and joints. They are light, super-strong, and virtually inert inside ...

Engineers develop novel method for accelerated bone growth

January 30, 2009

Engineers at the University of California at San Diego have come up with a way to help accelerate bone growth through the use of nanotubes and stem cells. This new finding could lead to quicker and better recovery, for example, ...

Recommended for you

Graphene under pressure

August 25, 2016

Small balloons made from one-atom-thick material graphene can withstand enormous pressures, much higher than those at the bottom of the deepest ocean, scientists at the University of Manchester report.

Designing ultrasound tools with Lego-like proteins

August 25, 2016

Ultrasound imaging is used around the world to help visualize developing babies and diagnose disease. Sound waves bounce off the tissues, revealing their different densities and shapes. The next step in ultrasound technology ...

Nanovesicles in predictable shapes

August 25, 2016

Beads, disks, bowls and rods: scientists at Radboud University have demonstrated the first methodological approach to control the shapes of nanovesicles. This opens doors for the use of nanovesicles in biomedical applications, ...

'Artificial atom' created in graphene

August 22, 2016

In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom - for this reason, such electron ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.