Researchers improve ability to write and store information on electronic devices

September 13, 2007
Researchers improve ability to write and store information on electronic devices
Matthias Bode, Center for Nanoscale Materials, is shown with his enhanced spin polarized scanning tunneling microscope (SP-STM). His enhanced technique allows scientists to observe the magnetism of single atoms. Use of this method could lead to better magnetic storage devices for computers and other electronics. Credit: DOE/Argonne National Laboratory

New research led by the U.S. Department of Energy's Argonne National Laboratory physicist Matthias Bode provides a more thorough understanding of new mechanisms, which makes it possible to switch a magnetic nanoparticle without any magnetic field and may enable computers to more accurately write and store information.

Bode and four colleagues at the University of Hamburg used a special scanning tunneling microscope equipped with a magnetic probe tip to force a spin current through a small magnetic structure. The researchers were able to show that the structure's magnetization direction is not affected by a small current, but can be influenced if the spin current is sufficiently high.

Most computers today use dynamic random access memory, or DRAM, in which each piece of binary digital information, or bit, is stored in an individual capacitor in an integrated circuit. Bode's experiment focused on magneto-resistive random access memory, or MRAM, which stores data in magnetic storage elements consisting of two ferromagnetic layers separated by a thin non-magnetic spacer. While one of the two layers remains polarized in a constant direction, the other layer becomes polarized through the application of an external magnetic field either in the same direction as the top layer (for a "0") or in the opposite direction (for a "1").

Traditionally, MRAM are switched by magnetic fields. As the bit size has shrunk in each successive generation of computers in order to accommodate more memory in the same physical area, however, they have become more and more susceptible to "false writes" or "far-field" effects, Bode said. In this situation, the magnetic field may switch the magnetization not only of the target bit but of its neighbors as well. By using the tip of the Scanning Tunneling Microscope (STM), which has the potential to resolve structures down to a single atom, the scientists were able to eliminate that effect.

Bode and his colleagues were the first ones who did such work with an STM that generates high spatial-resolution data. "If you now push just a current through this bit, there's no current through the next structure over," Bode said. "This is a really local way of writing information."

The high resolution of the STM tip might enable scientists to look for small impurities in the magnetic storage structures and to investigate how they affect the magnet's polarization. This technique could lead to the discovery of a material or a method to make bit switching more efficient. "If you find that one impurity helps to switch the structure, you might be able to intentionally dope the magnet such that it switches at lower currents," Bode said.

Results of this research were published in the September 14 issue of Science and related research was published earlier this year in Nature.

Source: Argonne National Laboratory

Explore further: The solution to faster computing? Sing to your data

Related Stories

The solution to faster computing? Sing to your data

November 3, 2015

Nothing is more frustrating that watching that circle spinning in the centre of your screen, while you wait for your computer to load a programme or access the data you need. Now a team from the Universities of Sheffield ...

Sound waves could power hard disk drives of the future

November 11, 2015

Our need to store data is growing at an astonishing rate. An estimated 2.7 zettabytes (2.721) of data are currently held worldwide, equivalent to several trillion bytes for every one of the 7 billion people on Earth. Accessing ...

Incompressible electrons

November 2, 2015

Helium usually reminds people of colorful gas balloons. However, helium is much more than the filling for these children's treats.  It also helps quantum physicists to study the most exotic and hidden properties of matter. ...

Simple detection of magnetic skyrmions

October 6, 2015

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At the University of Hamburg these exotic magnetic structures ...

Jupiter's moon Ganymede

October 16, 2015

In 1610, Galileo Galilei looked up at the night sky through a telescope of his own design. Spotting Jupiter, he noted the presence of several "luminous objects" surrounding it, which he initially took for stars. In time, ...

Recommended for you


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.