21st-century pack mule: MIT's 'exoskeleton' lightens the load

September 19, 2007
21st-century pack mule: MIT's 'exoskeleton' lightens the load
Graduate student Conor Walsh demonstrates a prototype of the 'exoskeleton' he and other MIT researchers have devised. The invention can successfully take on 80 percent of an 80-pound load carried on a person's back. Photo: Samuel Au

Researchers in the MIT Media Lab's Biomechatronics Group have created a device to lighten the burden for soldiers and others who carry heavy packs and equipment.

Their invention, known as an exoskeleton, can support much of the weight of a heavy backpack and transfer that weight directly to the ground, effectively taking a load off the back of the person wearing the device.

In the September issue of the International Journal of Humanoid Robotics, the researchers report that their prototype can successfully take on 80 percent of an 80-pound load carried on a person's back, but there's one catch: The current model impedes the natural walking gait of the person wearing it.

"You can definitely tell it's affecting your gait," said Conor Walsh, a graduate student who worked on the project, but "you do feel it taking the load off and you definitely feel less stress on your upper body."

The research team was led by Hugh Herr, principal investigator of the Biomechatronics Group and associate professor in the MIT Media Lab. Earlier this summer, Herr and his colleagues unveiled the world's first robotic ankle for lower-limb amputees.

Eventually Herr hopes to create assistive leg devices that can be useful for anyone. Herr said he envisions leg exoskeletons that could help people run without breathing hard, as well as help to carry heavy loads.

"Our dream is that 20 years from now, people won't go to bike racks--they'll go to leg racks," he said.

Exoskeleton devices could boost the weight that a person can carry, lessen the likelihood of leg or back injury and reduce the perceived level of difficulty of carrying a heavy load.

The person wearing the exoskeleton places his or her feet in boots attached to a series of tubes that run up the leg to the backpack, transferring the weight of the backpack to the ground. Springs at the ankle and hip and a damping device at the knee allow the device to approximate the walking motion of a human leg, with a very small external power input (one watt).

Other research teams have produced exoskeleton devices that can successfully carry a load but require a large power source (about 3,000 watts, supplied by a gasoline engine).

When the MIT researchers tested their device, they found that although the load borne by the wearer's back was lightened, the person carrying the load had to consume 10 percent more oxygen than normal, because of the extra effort to compensate for the gait interference.

The team hopes to revise the design so the exoskeleton more closely mimics the movement of a human leg, allowing for more normal walking motion. The most important result of this study, says Walsh, is that the team's spring-based, low-energy design shows promise.

"This is the first time that it has been tested," he said. "We didn't know what to expect."

Source: MIT

Explore further: Students build Singapore's first personal flying machine

Related Stories

Students build Singapore's first personal flying machine

December 3, 2015

A team of eight engineering students from the National University of Singapore (NUS) have successfully built Singapore's first personal flying machine, dubbed Snowstorm. Comprising an intricate design of motors, propellers ...

Puffin: the one-person electric aircraft (w/ Video)

January 22, 2010

(PhysOrg.com) -- NASA engineers have designed an extremely quiet one-person electrically powered aircraft that can hover like a helicopter and fly like a plane. The “Puffin” launches from an upright position with the ...

First exoskeleton for industry unveiled

June 16, 2015

Production workers often lift up to 10 metric tons of material a day. According to the Work Foundation Alliance (Lancaster, UK), 44 million workers in the EU suffer from work-related musculoskeletal disorders. Now researchers ...

Hot fire check test of SpaceX first stage engines

March 10, 2014

The historic blast off of the first SpaceX rocket equipped with 'landing legs' and also carrying a private Dragon cargo vessel bound for the Space Station is now slated for March 16 following a short and "successful" hot ...

Recommended for you

Math reveals unseen worlds of Star Wars

February 10, 2016

Using a new computer program, EPFL researchers offer unusual insight into the universe of Star Wars, which includes more than 20,000 characters spread among 640 communities over a period of 36,000 years.

Twitter lets hot tweets rise to top of timelines

February 10, 2016

Twitter revamped its timeline Wednesday, allowing the "best" tweets to rise to the top, despite warnings of a revolt from members loyal to the real-time flow of the messaging platform.

Tiny diatoms boast enormous strength

February 8, 2016

Diatoms are single-celled algae organisms, around 30 to 100 millionths of a meter in diameter, that are ubiquitous throughout the oceans. These creatures are encased within a hard shell shaped like a wide, flattened cylinder—like ...

Battery technology could charge up water desalination

February 4, 2016

The technology that charges batteries for electronic devices could provide fresh water from salty seas, says a new study by University of Illinois engineers. Electricity running through a salt water-filled battery draws the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.