Ultra-strong, flexible nanofiber-based 'paper' step closer to commercialization

August 9, 2007

Groundbreaking research at the University of Arkansas is one step closer to commercialization. Intellectual Property Partners LLC, an Atlanta company that turns promising technologies into profitable ventures for the business world, now holds the global license for a multifunctional material developed by a chemist at the university.

When assembled into free-standing membranes, the material, a two-dimensional "paper" made out of titanium-based nanowires, provides solutions for a variety of applications, including chemical and water filtration, solar cells, drug delivery and non-woven textiles stable at high-temperature.

"It is unprecedented to have such a pure fiber," said James Throckmorton, president of Intellectual Property Partners LLC. "In addition to withstanding extreme temperatures, titanium-dioxide-based nanowires can be used in concentrated, strong chemical acids and bases. We're excited to offer this patent-pending technology to a company that can bring it to market."

Developed by Z. Ryan Tian, an assistant professor of chemistry and biochemistry, titanium-dioxide - also known as TiO2, titania and titanium white - nanowires are extremely light, long and thin fibers. They have a diameter of 60 nanometers and are 30 to 40 millimeters long. A nanometer equals one billionth of meter. The nanowires can withstand temperatures up to 700 degrees Celsius. Their high thermal stability and chemical inertness ensure performance in high temperatures and other harsh environments.

In 2006, Tian and his research team published the findings in the Journal of Physical Chemistry B. They reported that the material could be folded, cut and shaped into three-dimensional devices. The researchers used a hydrothermal heating process to create long nanowires out of titanium dioxide. From there, they created free-standing membranes. The resulting material resembled regular, white paper. The researchers created tubes, bowls and cups with the material.

Source: University of Arkansas

Explore further: Scientists develop method that creates nanowires with new useful properties

Related Stories

Tiny wires could provide a big energy boost

July 7, 2015

Wearable electronic devices for health and fitness monitoring are a rapidly growing area of consumer electronics; one of their biggest limitations is the capacity of their tiny batteries to deliver enough power to transmit ...

A stretchy mesh heater for sore muscles

July 3, 2015

If you suffer from chronic muscle pain a doctor will likely recommend for you to apply heat to the injury. But how do you effectively wrap that heat around a joint? Korean Scientists at the Center for Nanoparticle Research, ...

Engineers show how 'perfect' materials begin to fail

June 4, 2015

Crystalline materials have atoms that are neatly lined up in a repeating pattern. When they break, that failure tends to start at a defect, or a place where the pattern is disrupted. But how do defect-free materials break?

Nano-policing pollution

May 13, 2015

Pollutants emitted by factories and car exhausts affect humans who breathe in these harmful gases and also aggravate climate change up in the atmosphere. Being able to detect such emissions is a critically needed measure.

Recommended for you

Fast times and hot spots in plasmonic nanostructures

August 4, 2015

The ability to control the time-resolved optical responses of hybrid plasmonic nanostructures was demonstrated by a team led by scientists in the Nanophotonics Group at the Center for Nanoscale Materials including collaborators ...

Study explores nanoscale structure of thin films

August 4, 2015

The world's newest and brightest synchrotron light source—the National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory—has produced one of the first publications ...

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.