Ultra-strong, flexible nanofiber-based 'paper' step closer to commercialization

August 9, 2007

Groundbreaking research at the University of Arkansas is one step closer to commercialization. Intellectual Property Partners LLC, an Atlanta company that turns promising technologies into profitable ventures for the business world, now holds the global license for a multifunctional material developed by a chemist at the university.

When assembled into free-standing membranes, the material, a two-dimensional "paper" made out of titanium-based nanowires, provides solutions for a variety of applications, including chemical and water filtration, solar cells, drug delivery and non-woven textiles stable at high-temperature.

"It is unprecedented to have such a pure fiber," said James Throckmorton, president of Intellectual Property Partners LLC. "In addition to withstanding extreme temperatures, titanium-dioxide-based nanowires can be used in concentrated, strong chemical acids and bases. We're excited to offer this patent-pending technology to a company that can bring it to market."

Developed by Z. Ryan Tian, an assistant professor of chemistry and biochemistry, titanium-dioxide - also known as TiO2, titania and titanium white - nanowires are extremely light, long and thin fibers. They have a diameter of 60 nanometers and are 30 to 40 millimeters long. A nanometer equals one billionth of meter. The nanowires can withstand temperatures up to 700 degrees Celsius. Their high thermal stability and chemical inertness ensure performance in high temperatures and other harsh environments.

In 2006, Tian and his research team published the findings in the Journal of Physical Chemistry B. They reported that the material could be folded, cut and shaped into three-dimensional devices. The researchers used a hydrothermal heating process to create long nanowires out of titanium dioxide. From there, they created free-standing membranes. The resulting material resembled regular, white paper. The researchers created tubes, bowls and cups with the material.

Source: University of Arkansas

Explore further: First circularly polarized light detector on a silicon chip

Related Stories

First circularly polarized light detector on a silicon chip

September 22, 2015

Invention of the first integrated circularly polarized light detector on a silicon chip opens the door for development of small, portable sensors that could expand the use of polarized light for drug screening, surveillance, ...

Building the ultimate light detector

August 10, 2015

Eric Bonvin is currently working at László Forró's lab at EPFL. A Swiss-American, he was born in the Lausanne area, and grew up in Switzerland, Germany. His summer project aims to develop ultra-sensitive light detectors ...

Tiny wires could provide a big energy boost

July 7, 2015

Wearable electronic devices for health and fitness monitoring are a rapidly growing area of consumer electronics; one of their biggest limitations is the capacity of their tiny batteries to deliver enough power to transmit ...

Recommended for you

Touchless displays superseding touchscreens?

October 2, 2015

While touchscreens are practical, touchless displays would be even more so. That's because, despite touchscreens having enabled the smartphone's advance into our lives and being essential for us to be able to use cash dispensers ...

Physicists map the strain in wonder material graphene

September 29, 2015

This week, an international group of scientists is reporting a breakthrough in the effort to characterize the properties of graphene noninvasively while acquiring information about its response to structural strain.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.