UK satellite mission to improve accuracy of climate-change measurements gains global support

August 17, 2007

TRUTHS (Traceable Radiometry Underpinning Terrestrial- and Helio- Studies) is a proposed satellite mission, led by the National Physical Laboratory, to improve tenfold the accuracy of earth observation satellites used to deliver climate change data.

TRUTHS will launch a calibration laboratory into space to help settle international debates around climate change and provide a robust statistical baseline from which to monitor and predict changes in the Earth’s climate. Enabling the provision of data of sufficient accuracy to improve the predictive quality of climate models such as those of the UK Hadley centre a key requirement highlighted in the Stern review.

Since its initial proposal more than five years ago TRUTHS has been seeking the level of financial support required to convert it from theory to a fully-fledged satellite mission. Recent reports from the United Nations, the World Meteorological Organisation and the US Academy of Sciences all call for a spaceflight mission designed to achieve exactly what TRUTHS was established to deliver. The latter has even recommended such a mission as one of the four priorities for US spaceflight by 2013.

“We’ve seen a recent surge in recognition around the world that we need more accurate data about our climate,” explains Dr Nigel Fox, NPL’s lead scientist on TRUTHS. “This can only be good news. With so many influential organisations calling for a TRUTHS-like mission we hope to be moving from scientific theory to spaceflight very soon.”

Why is TRUTHS important?

Assessments of climate change and the consequential scale of its impact depend on accurate data from scores of earth observation satellites. They ought to provide unequivocal evidence to support national and international legislation. But most earth observation data is disputable.

“We just don’t know if the instruments are really accurate enough once they’ve been in space for a couple of years,” Fox says. “What we do know is they all seem to produce slightly different results, and that gives a lot of unnecessary wriggle room to those who dispute the evidence for human origins of climate change. The uncertainty of the data allows the sceptics to exist.”

The problem lies with calibration. Delicate measuring devices on earth – those used in medical and high-tech industries, for example – are regularly calibrated against primary physical standards held by national measurement institutes such as NPL. Instruments in space don’t have this luxury. They are finely tuned before they leave the earth. “But after that we just don’t know,” Dr Fox says. “Even if these sensitive instruments survive the violence of a rocket launch, their sensitivity changes over time. But we don’t really know by how much.” It’s not logistically or financially viable to bring these instruments back down to earth for a service every few months. “They can’t come to us so we’ll sort it out in orbit,” says Dr Fox.

The idea is for TRUTHS to be a master device in orbit, against which other earth observation satellites are tested and calibrated. That ensures they will all be working off the same measurement benchmark. It also reduces costs – a central orbiting reference point means each individual satellite doesn’t need to be equipped with its own individual suite of calibration tools.

Although the needs of climate science are perhaps the most demanding in terms of accuracy, such a mission would also serve as a reference to underpin the quality of data that is being generated and processed as part of the European GMES initiative and also that of GEO.

Source: National Physical Laboratory

Explore further: Good COP, bad COP: Will Paris climate summit prevail?

Related Stories

How could DSCOVR help in exoplanet hunting?

November 24, 2015

Could a space weather satellite be helpful in exoplanet hunting? Well, it now turns out it could. According to a team of scientists led by Stephen Kane from the San Francisco State University, the Deep Space Climate Observatory ...

Seven case studies in carbon and climate

November 13, 2015

Every part of the mosaic of Earth's surface—ocean and land, Arctic and tropics, forest and grassland—absorbs and releases carbon in a different way. Wild-card events such as massive wildfires and drought complicate the ...

Recommended for you

A blue, neptune-size exoplanet around a red dwarf star

November 25, 2015

A team of astronomers have used the LCOGT network to detect light scattered by tiny particles (called Rayleigh scattering), through the atmosphere of a Neptune-size transiting exoplanet. This suggests a blue sky on this world ...

The hottest white dwarf in the Galaxy

November 25, 2015

Astronomers at the Universities of Tübingen and Potsdam have identified the hottest white dwarf ever discovered in our Galaxy. With a temperature of 250,000 degrees Celsius, this dying star at the outskirts of the Milky ...

Aging star's weight loss secret revealed

November 25, 2015

A team of astronomers using ESO's Very Large Telescope has captured the most detailed images ever of the hypergiant star VY Canis Majoris. These observations show how the unexpectedly large size of the particles of dust surrounding ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.