Tectonic plates act like variable thermostat

August 13, 2007

Like a quilt that loses heat between squares, the earth’s system of tectonic plates lets warmth out at every stitch.

But a new study in PNAS Early Edition finds the current blanket much improved over the leaky patchwork of 60 million years ago.

The study, appearing online the week of Aug. 13-17, shows that heat flowed out of Earth’s mantle at a high rate 60 million years ago, when small tectonic plates made up the Pacific basin.

The reason, the authors said, is that much of the heat from the mantle escapes near the ridges between newly formed plates. Those areas are thinner and allow more heat to pass.

The smaller the plates, the greater the heat loss from the mantle on which they float, said geophysicists from the University of Southern California, Johns Hopkins University and the University of Michigan at Ann Arbor.

Several small plates have more area close to the ridge – and allow more heat to pass – than one large plate, explained lead author Thorsten Becker, assistant professor of earth sciences at USC.

“When you go back 60 million years there were a bunch more smaller plates in the Pacific basin,” Becker said.

Using seafloor age reconstructions published last year, Becker and his co-authors found that heat flow out of the mantle in the last 60 million years was greater than previously estimated.

They also found that heat flow is relatively low now that the Pacific basin consists mainly of one large plate.

Becker added that variations in heat flow would not necessarily affect surface temperature, which depends on many factors, including solar activity and greenhouse gases in the atmosphere.

However, Becker said, a leaky tectonic quilt on average would lead to greater volcanic activity, earthquakes and plate movement. This would affect almost every aspect of Earth’s geography, from sea level to erosion to climate.

“There’s sort of a chain of things that follows from a good mechanical understanding of how plate tectonics works,” he said.

Like previous estimates of heat flow, the new study raises a nagging question. If heat loss for the past few billion years was comparable to Becker’s estimate, the mantle would have had to be impossibly hot at the beginning of Earth’s history.

Becker’s study, which implies an even greater rate of heat loss, shows that previous models designed to avert a “thermal catastrophe” do not work.

“A different solution to the thermal catastrophe needs to be found,” he said.

Source: University of Southern California

Explore further: CT scan of Earth links deep mantle plumes with volcanic hotspots

Related Stories

Piecing together the Pangea puzzle

July 30, 2015

Two hundred and fifty million years ago, all the major continents were joined together, forming a continent called Pangea (which means "all land" in Greek). The plate thickness of continents can now be measured using seismology, ...


July 27, 2015

As the morning star, the evening star, and the brightest natural object in the sky (after the Moon), human beings have been aware of Venus since time immemorial. Even though it would be many thousands of years before it was ...

Recommended for you

Asteroid impact, volcanism were one-two punch for dinosaurs

October 1, 2015

Berkeley geologists have uncovered compelling evidence that an asteroid impact on Earth 66 million years ago accelerated the eruptions of volcanoes in India for hundreds of thousands of years, and that together these planet-wide ...

History shows more big wildfires likely as climate warms

October 5, 2015

The history of wildfires over the past 2,000 years in a northern Colorado mountain range indicates that large fires will continue to increase as a result of a warming climate, according to new study led by a University of ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Nov 22, 2007
I'm lost with this article. I was under the impression that this is an old result.

AFAIK it has been proposed/known for some time now that when super continents form, the astneosphere has a tendency to overheat, which after a period of time causes the supercontinents to break up, starting the cycle anew.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.