Scientists find elusive waves in sun's corona

August 30, 2007
The Sun

Scientists for the first time have observed elusive oscillations in the Sun's corona, known as Alfvén waves, that transport energy outward from the surface of the Sun. The discovery is expected to give researchers more insight into the fundamental behavior of solar magnetic fields, eventually leading to a fuller understanding of how the Sun affects Earth and the solar system.

The research, led by Steve Tomczyk of the National Center for Atmospheric Research (NCAR), is being published this week in Science.

"Alfvén waves can provide us with a window into processes that are fundamental to the workings of the Sun and its impacts on Earth," says Tomczyk, a scientist with NCAR's High Altitude Observatory.

Alfvén waves are fast-moving perturbations that emanate outward from the Sun along magnetic field lines, transporting energy. Although they have been detected in the heliosphere outside the Sun, they have never before been viewed within the corona, which is the outer layer of the Sun's atmosphere. Alfvén waves are difficult to detect partly because, unlike other waves, they do not lead to large-intensity fluctuations in the corona. In addition, their velocity shifts are small and not easily spotted.

"Our observations allowed us to unambiguously identify these oscillations as Alfvén waves," says coauthor Scott McIntosh of the Southwest Research Institute in Boulder. "The waves are visible all the time and they occur all over the corona, which was initially surprising to us."

Insights into the Sun

By tracking the speed and direction of the waves, researchers will be able to infer basic properties of the solar atmosphere, such as the density and direction of magnetic fields. The waves may provide answers to questions that have puzzled physicists for generations, such as why the Sun's corona is hundreds of times hotter than its surface.

The research also can help scientists better predict solar storms that spew thousands of tons of magnetized matter into space, sometimes causing geomagnetic storms on Earth that disrupt sensitive telecommunications and power systems. By learning more about solar disruptions, scientists may be able to better protect astronauts from potentially dangerous levels of radiation in space.

"If we want to go to the moon and Mars, people need to know what's going to happen on the Sun," Tomczyk says.

A powerful instrument

To observe the waves, Tomczyk and his coauthors turned to an instrument developed at NCAR over the last few years. The coronal multichannel polarimeter, or CoMP, uses a telescope at the National Solar Observatory in Sacramento Peak, New Mexico, to gather and analyze light from the corona, which is much dimmer than the Sun itself. It tracks magnetic activity around the entire edge of the Sun and collects data with unusual speed, making a measurement as frequently as every 15 seconds.

The instrument enabled the research team to simultaneously capture intensity, velocity, and polarization images of the solar corona. Those images revealed propagating oscillations that moved in trajectories aligned with magnetic fields, and traveled as fast as nearly 2,500 miles per second.

Source: National Center for Atmospheric Research

Explore further: Brown dwarf stars host powerful aurora displays, astronomers discover

Related Stories

Sunny, with a chance of nuclear bullets

July 23, 2015

In space, far above Earth's turbulent atmosphere, you might think the one thing you don't have to worry about is weather. But you would be wrong. Just ask the people charged with the safety of the Cloud-Aerosol Lidar and ...

Irregular heartbeat of the Sun driven by double dynamo

July 9, 2015

A new model of the Sun's solar cycle is producing unprecedentedly accurate predictions of irregularities within the Sun's 11-year heartbeat. The model draws on dynamo effects in two layers of the Sun, one close to the surface ...

Pulsar punches hole in stellar disk

July 22, 2015

A fast-moving pulsar appears to have punched a hole in a disk of gas around its companion star and launched a fragment of the disk outward at a speed of about 4 million miles per hour. NASA's Chandra X-ray Observatory is ...

Researchers show new Ice Age may begin by 2030

July 17, 2015

The arrival of intense cold similar to the weather that raged during the "Little Ice Age", which froze the world during the 17th century and in the beginning of the 18th century, is expected in the years 2030 to 2040. These ...

Recommended for you

First detection of lithium from an exploding star

July 29, 2015

The chemical element lithium has been found for the first time in material ejected by a nova. Observations of Nova Centauri 2013 made using telescopes at ESO's La Silla Observatory, and near Santiago in Chile, help to explain ...

Dense star clusters shown to be binary black hole factories

July 29, 2015

The coalescence of two black holes—a very violent and exotic event—is one of the most sought-after observations of modern astronomy. But, as these mergers emit no light of any kind, finding such elusive events has been ...

New names and insights at Ceres

July 29, 2015

Colorful new maps of Ceres, based on data from NASA's Dawn spacecraft, showcase a diverse topography, with height differences between crater bottoms and mountain peaks as great as 9 miles (15 kilometers).

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.