Regulating those raging (plant) hormones

Aug 21, 2007

The Biblical book of Amos describes the 8th-century BC prophet as a "gatherer" of sycomore figs. Some now think a more correct translation would be "piercer," because that's how ancient farmers got that type of fig to ripen. Centuries later, the Greek philosopher and botanist Theophrastus (371-286 BC) described this method: "It cannot ripen unless it is scraped, but they scrape it with iron claws; the fruit thus scraped ripens in four days."

Biologists now know that the substance at play in those early horticultural practices was ethylene, a gaseous hormone that dictates changes throughout the life cycle of the plant. Ethylene tells plants when to germinate, bear fruit, drop their leaves and petals, and wither and die. Plants synthesize and release ethylene in response to changes in light and air temperature, and during the course of normal growth and development—as well as in response to pathogens or wounds, as in the case of the ancient farmers.

Recent research led by a Dartmouth biologist helps explain how plants regulate those all-important responses to ethylene, a body of knowledge that could help the food and cut-flower industries better control ripening and decay, said the researcher, Dartmouth Associate Professor of Biological Sciences G. Eric Schaller.

In a paper published this month in The Journal of Biological Chemistry, Schaller and colleagues from Dartmouth and the University of New Hampshire studied the plant Arabidopsis, a small flowering plant related to the cabbage and mustard plants. While Arabidopsis itself is of no commercial value, it is widely used for research because it has a short life cycle, is a prolific seed-producer, and has a relatively small genome, covering 125 million base pairs, about one-twentieth the size of the genome of corn, Schaller said.

The team focused on the ethylene receptor ETR2, one of a family of proteins that bind to that hormone. The group found that once ETR2 had bound to an ethylene molecule and sent a chemical message saying ethylene was present, the protein degraded and no longer functioned. This suggests that the plant cell somehow destroys the ETR2 receptors as a means of regulating the receptor's signal, rather than waiting for the hormone molecule to diffuse away from the receptor.

The paper, titled "Ligand-Induced Degradation of the Ethylene Receptor ETR2 through a Proteasome-Dependent Pathway in Arabidopsis," was co-authored by Dartmouth researchers Yi-Feng Chen and Samina Shakeel, as well as former Dartmouth researcher Naomi Etheridge, and former University of New Hampshire researchers Julie Bowers and Xue-Chu Zhao.

Plants also respond to ethylene from outside sources, such as the form of air pollution that hastened the hormone's discovery a century ago, Schaller said. Leaks from pipelines used to transport gas used for illumination began to be associated with premature aging in nearby trees and greenhouse plants. In 1901, Dimitry Neljubov, a young researcher at the Botanical Institute of St Petersburg, published results identifying ethylene as the active component in the gas. Within a few decades, external ethylene was being used to ripen fruit, and researchers had demonstrated that plants themselves produced the hormone.

Source: Dartmouth College

Explore further: Pesticide study shows that sexual conflict can maintain genetic variation

Related Stories

Can pollution help trees fight infection?

38 minutes ago

Trees that can tolerate soil pollution are also better at defending themselves against pests and pathogens. "It looks like the very act of tolerating chemical pollution may give trees an advantage from biological ...

Most internet anonymity software leaks users' details

38 minutes ago

Virtual Private Networks (VPNs) are legal and increasingly popular for individuals wanting to circumvent censorship, avoid mass surveillance or access geographically limited services like Netflix and BBC ...

Improving rice flour to aid food poverty

38 minutes ago

A new, high-quality rice flour could help towards aiding global food poverty. "This rice flour serves not only as an alternative to wheat flour for those with wheat intolerance, but could also help to overcome ...

In the UK, bPay offers fob, band or sticker options

1 hour ago

Method of payment: "Cash or credit?" The two options sound so yesterday. In the UK, technology support in banking offers a new type of menu—band on the wrist, fob or sticker. The three new devices from ...

WikiLeaks says NSA spied on French business

2 hours ago

WikiLeaks has released documents that it says show that the U.S. National Security Agency eavesdropped on France's top finance officials and high-stakes French export bids over a decade in what the group called targeted economic ...

Recommended for you

Can pollution help trees fight infection?

38 minutes ago

Trees that can tolerate soil pollution are also better at defending themselves against pests and pathogens. "It looks like the very act of tolerating chemical pollution may give trees an advantage from biological ...

Improving rice flour to aid food poverty

38 minutes ago

A new, high-quality rice flour could help towards aiding global food poverty. "This rice flour serves not only as an alternative to wheat flour for those with wheat intolerance, but could also help to overcome ...

Stink bugs have strong taste for ripe fruit

2 hours ago

The brown marmorated stink bug has a bad reputation. And for good reason: every summer, this pest attacks crops and invades homes, causing both sizable economic losses and a messy, smelly nuisance—especially ...

Researchers discover how petunias know when to smell good

4 hours ago

Good timing is a matter of skill. You would certainly dress up for an afternoon business meeting, but not an evening session of binge-watching Netflix. If you were just a few hours off in your wardrobe timing, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.