Photonic quantum technologies could be only light years away

Aug 30, 2007

Photonic quantum information science could soon move out of the laboratory and be used in future technologies like quantum computers thanks to a grant of over £1 million.

The EPSRC five-year grant has been awarded to Dr Jeremy O’Brien, Reader in Research in the Department of Electrical and Electronic Engineering and Department of Physics at the University of Bristol as part of the Challenging Engineering programme.

Quantum mechanics tells us how the world works at its most fundamental level. It predicts very strange behaviour that can typically only be observed when things are very cold and very small.

The project aims to develop each of the building blocks for photonic quantum technologies, technologies that harness quantum mechanics for vastly improved performance. Single particles of light - photons - are ideal for storing quantum information because they suffer from almost no noise, but as yet high efficiency single photon sources, detectors and circuits have not been realised.

The research hopes to develop single photon sources based on atom-like colour centres in diamond, optical wires on optical chips, and superconducting single photon detectors. It also aims to integrate all of these components on a single optical chip.

Quantum information science has emerged in the last decades to look at what additional power and functionality can be utilised by quantum mechanical effects in the encoding, transmission and processing of information.

Anticipated future technologies include quantum computers with tremendous computational power, quantum metrology which promises the most precise measurements possible, and quantum cryptography, which offers perfect security and is already being used in commercial communication systems.

Dr Jeremy O’Brien said: “I am delighted to have received the grant. There have already been a number of impressive proof-of-principle demonstrations of photonic information science.

“However, photonic quantum technologies have reached a roadblock, they are stuck in the research laboratory. I hope my research will change this.”

Source: University of Bristol

Explore further: Team invents microscopic sonic screwdriver

Related Stories

Porous, layered material can serve as a graphene analog

May 19, 2015

An electrically conductive material, with layers resembling graphene (single sheet of graphite), was synthesized under mild conditions using a well-known molecule that allows good electronic coupling of nickel ...

Recommended for you

Researchers prove magnetism can control heat, sound

May 28, 2015

Phonons—the elemental particles that transmit both heat and sound—have magnetic properties, according to a landmark study supported by Ohio Supercomputer Center (OSC) services and recently published by ...

How researchers listen for gravitational waves

May 28, 2015

A century ago, Albert Einstein postulated the existence of gravitational waves in his General Theory of Relativity. But until now, these distortions of space-time have remained stubbornly hidden from direct ...

What's fair?: New theory on income inequality

May 27, 2015

The increasing inequality in income and wealth in recent years, together with excessive pay packages of CEOs in the U.S. and abroad, is of growing concern, especially to policy makers. Income inequality was ...

Scientists one step closer to mimicking gamma-ray bursts

May 27, 2015

Using ever more energetic lasers, Lawrence Livermore researchers have produced a record high number of electron-positron pairs, opening exciting opportunities to study extreme astrophysical processes, such ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.