Photonic quantum technologies could be only light years away

August 30, 2007

Photonic quantum information science could soon move out of the laboratory and be used in future technologies like quantum computers thanks to a grant of over £1 million.

The EPSRC five-year grant has been awarded to Dr Jeremy O’Brien, Reader in Research in the Department of Electrical and Electronic Engineering and Department of Physics at the University of Bristol as part of the Challenging Engineering programme.

Quantum mechanics tells us how the world works at its most fundamental level. It predicts very strange behaviour that can typically only be observed when things are very cold and very small.

The project aims to develop each of the building blocks for photonic quantum technologies, technologies that harness quantum mechanics for vastly improved performance. Single particles of light - photons - are ideal for storing quantum information because they suffer from almost no noise, but as yet high efficiency single photon sources, detectors and circuits have not been realised.

The research hopes to develop single photon sources based on atom-like colour centres in diamond, optical wires on optical chips, and superconducting single photon detectors. It also aims to integrate all of these components on a single optical chip.

Quantum information science has emerged in the last decades to look at what additional power and functionality can be utilised by quantum mechanical effects in the encoding, transmission and processing of information.

Anticipated future technologies include quantum computers with tremendous computational power, quantum metrology which promises the most precise measurements possible, and quantum cryptography, which offers perfect security and is already being used in commercial communication systems.

Dr Jeremy O’Brien said: “I am delighted to have received the grant. There have already been a number of impressive proof-of-principle demonstrations of photonic information science.

“However, photonic quantum technologies have reached a roadblock, they are stuck in the research laboratory. I hope my research will change this.”

Source: University of Bristol

Explore further: Superlattice design realizes elusive multiferroic properties

Related Stories

Paving the way for a faster quantum computer

August 11, 2015

A team of physicists from the University of Vienna and the Austrian Academy of Sciences have demonstrated a new quantum computation scheme in which operations occur without a well-defined order. The researchers led by Philip ...

Building the ultimate light detector

August 10, 2015

Eric Bonvin is currently working at László Forró's lab at EPFL. A Swiss-American, he was born in the Lausanne area, and grew up in Switzerland, Germany. His summer project aims to develop ultra-sensitive light detectors ...

Magnetism at nanoscale

August 3, 2015

As the demand grows for ever smaller, smarter electronics, so does the demand for understanding materials' behavior at ever smaller scales. Physicists at the U.S. Department of Energy's Ames Laboratory are building a unique ...

Recommended for you

Long-sought chiral anomaly detected in crystalline material

September 3, 2015

A study by Princeton researchers presents evidence for a long-sought phenomenon—first theorized in the 1960s and predicted to be found in crystals in 1983—called the "chiral anomaly" in a metallic compound of sodium and ...

Probing the limits of wind power generation

September 2, 2015

(Phys.org)—Wind turbine farms now account for an estimated 3.3 percent of electricity generation in the United States, and 2.9 percent of electricity generated globally. The wind turbine industry is growing along all vectors, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.