Researchers discover some of the oldest forms of life

August 7, 2007

University of Queensland researchers have identified microbial remains in some of the oldest preserved organic matter on Earth, confirmed to be 3.5 billion years-old.

The UQ team, led by School of Physical Sciences scientists Dr Miryam Glikson and Associate Professor Sue Golding as well as Associate Professor Lindsay Sly from the School of Molecular & Microbial Sciences, are the first to conclusively confirm the nature and source of the organic material.

Aspects of the research have been published in the prestigious scientific journal Precambrian Research.

“What we have found is the first visual confirmation of primitive microbial communities in what is considered to be the best preserved ancient organic matter on our planet,” Dr Glikson, the instigator of the research, said.

Dr Golding, Director UQ's Stable Isotope Laboratory in the Division of Earth Sciences, said previous studies used indirect analytical methods that were only able to suggest microbial involvement, not confirm it.

“We used difficult and time-consuming electron microscope techniques to conclusively confirm the microbial remains,” Dr Golding said.

“The integration of observational and micro-analytical techniques is unique to our approach.”

The core drilling samples from Western Australia's Pilbara region were collected by PhD student Lawrie Duck who said it was an amazing experience to “hold in your hands rocks that contain remains of some of the earliest forms of life on Earth.”

“The Pilbara region is such a good research site as it has ancient forms of the white smokers active at plate margins today and black sulfidic smokers found in sea floor vent systems in tectonically active sites,” he said.

“These are the places where scientists believe life on Earth might have had its origins.”

Dr Glikson said the UQ team had then taken the study further by comparing the fossil microbial structures to primitive microbes found today in seafloor environments similar to those existing 3.5 billion years ago.

“The microbiologists on the team, led by Dr Sly, cultured currently existing primitive microbes under simulated conditions to those of the ancient forms of life,” Dr Glikson said.

“A remarkable resemblance was found between the structures of the cultured microbial entities at their stage of disintegration and those of the ancient microbial remains.”

The other members of the UQ research team were Robyn Webb, from the Centre for Microscopy and Microanalysis, a specialist in transmission electron microscopical techniques; Justice Baiano, from the School of Molecular & Microbial Sciences, who developed special facilities to culture primitive microbes derived from seafloor mineral-laden hot springs active at plate margins today; and Kim Baublys, from the Stable Isotope Laboratory, who undertook analysis of products from the culture experiments.

A comparison with organic matter from rocks of similar age in South Africa also yielded microbial remains identical to those from the Pilbara, further confirming the UQ work. This was achieved with the collaboration of Dr Axel Hofmann from the University of Kwazulu, South Africa and Dr Robert Bolhar formerly of the University of Canterbury, New Zealand.

Source: UQ

Related Stories

Recommended for you

'Expansion entropy': A new litmus test for chaos?

July 28, 2015

Can the flap of a butterfly's wings in Brazil set off a tornado in Texas? This intriguing hypothetical scenario, commonly called "the butterfly effect," has come to embody the popular conception of a chaotic system, in which ...

Lobster-Eye imager detects soft X-ray emissions

July 28, 2015

Solar winds are known for powering dangerous space weather events near Earth, which, in turn, endangers space assets. So a large interdisciplinary group of researchers, led by the U.S. National Aeronautics and Space Administration ...

'Carbon sink' detected underneath world's deserts

July 28, 2015

The world's deserts may be storing some of the climate-changing carbon dioxide emitted by human activities, a new study suggests. Massive aquifers underneath deserts could hold more carbon than all the plants on land, according ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.