Nanoreactors for Reaction Cascades

August 17, 2007

Living cells are highly complex synthetic machines: Numerous multistep reactions run simultaneously side by side and with unbelievable efficiency and specificity. For these mainly enzymatic reactions to work so well collectively, nature makes use of a variety of concepts. One of the most important of these is division into compartments. Enzymes are not only separated spatially, but also positioned in specific locations within the cell.

Researchers from the Netherlands, led by Jan C. M. van Hest and Alan E. Rowan, have now developed an approach to copy this idea, as they report in the journal Angewandte Chemie.

They constructed nanoreactors by controlled positioning of two different enzymes in the central water reservoir or the plastic membrane of synthetic nanoscopic bubbles. In combination with a third enzyme in the surrounding solution, this system has made it possible to run three different enzymatic reactions simultaneously, without interference, in a “one-pot” reaction.

To mimic a cellular environment, the scientists produced nanoscopic bubbles surrounded by a membrane made of a special plastic. The plastic is a block copolymer that is analogous to a lipid, the natural building block of cell membranes, in its structure, with a water-friendly “head” and a water-repellent “tail”.

In analogy to liposomes, which are made from lipids, these bubbles are called polymersomes. Thanks to nearly limitless possibilities in the production of these plastic membranes, the spectrum of properties displayed by polymersomes can be precisely tailored.

The researchers produced their polymersomes such that they let small molecules pass through while forming a barrier to larger ones. This allows enzymes to be trapped inside the polymersomes (in the water reservoir) while the smaller substrate or product molecules pass through unhindered.

To demonstrate the potential of their “nanoreactors”, the researchers bound the enzyme horseradish peroxidase into the membrane itself. Within the water reservoir, they trapped the enzyme glucose oxidase. The surrounding solution contained the enzyme lipase B. Glucose molecules with four acetyl groups attached were added as the substrate.

In the first step, the lipase B split off the acetyl groups. The resulting glucose could cross the membrane, where it encountered the glucose oxidase and was oxidized by it. This reaction formed hydrogen peroxide, which is just what the horseradish peroxidase was waiting for in order to convert the sample substrate ABTS (2,2’-azinobis(3-ethylbenzthiazoline-6-sulfonic acid))—also contained in the solution—into its radical cation.

Citation: Jan C. M. van Hest, et al., Positional Assembly of Enzymes in Polymersome Nanoreactors for Cascade Reactions, Angewandte Chemie International Edition, doi: 10.1002/anie.200701125

Source: Angewandte Chemie

Explore further: New technologies could lead to more drinkable, cleaner water

Related Stories

Synthetic cells used to bioengineer new forms of silica

June 8, 2012

(Phys.org) -- Scientists do not fully understand how nature uses proteins to develop new materials and minerals, but learning more about the natural processes could lead to bioengineering methods such as the biological synthesis ...

Want to silence a gene? Pull here

March 21, 2011

(PhysOrg.com) -- Simply stretching DNA can silence a gene, scientists at the UA have discovered. The finding could point to a previously unknown gene control mechanism.

Recommended for you

How bees naturally vaccinate their babies

July 31, 2015

When it comes to vaccinating their babies, bees don't have a choice—they naturally immunize their offspring against specific diseases found in their environments. And now for the first time, scientists have discovered how ...

Image: Hubble sees a dying star's final moments

July 31, 2015

A dying star's final moments are captured in this image from the NASA/ESA Hubble Space Telescope. The death throes of this star may only last mere moments on a cosmological timescale, but this star's demise is still quite ...

Exoplanets 20/20: Looking back to the future

July 31, 2015

Geoff Marcy remembers the hair standing up on the back of his neck. Paul Butler remembers being dead tired. The two men had just made history: the first confirmation of a planet orbiting another star.

Earth flyby of 'space peanut' captured in new video

July 31, 2015

NASA scientists have used two giant, Earth-based radio telescopes to bounce radar signals off a passing asteroid and produce images of the peanut-shaped body as it approached close to Earth this past weekend.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.