Mirrors could be a key to quantum computing

August 31, 2007 By Miranda Marquit feature

“We want to push the envelope,” Pierre Meystre tells PhysOrg.com. “We are trying to figure out how big an object can be and still be measured quantum mechanically.”

The idea, he says, is to get a better idea of where the boundary between quantum mechanics and classical mechanics exists. “Quantum mechanics was invented to deal with atoms and molecules,” Meystre continues, “but the idea is to apply the concepts to bigger and bigger systems until we see where the rules for quantum mechanics aren’t needed and we see classical mechanics.”

In order to study this subject, Meystre directed his post-doc student Mishkat Bhattacharya to try and create a model for cooling a mirror to its quantum mechanical ground state. Instead of using two mirrors, as is regular practice, Meystre directed Bhattacharya to use three mirrors. The University of Arizona theorists report the results of this modeling in Physical Review Letters. Their piece is titled, “Trapping and Cooling a Mirror to Its Quantum Mechanical Ground State.”

“There are many advantages to using three mirrors rather than two,” explains Bhattacharya. “With two mirrors, you can only get the irradiation from one side. Three mirrors allow you to set it up so that the middle mirror, the one we are cooling, gets the trapping force from both dies.”

Another advantage, Bhattacharya says, is that three mirrors helps resolve one of the conflicting technical demands on such systems. “The mirror needs to be small to be brought to its quantum mechanical ground state, but it needs to be big for practical mechanical use.” Three mirrors allow a setup in which the two mirrors on the end can be larger, while the middle mirror is properly small.

Bhattacharya also explains that another way to cool a mirror is to make it stiff, to stop its oscillations. With careful calculations, it is possible to use the two end mirrors to reduce the oscillations of the middle mirror. “What we have is a system that traps and cools the mirror two ways. With the laser radiation we can take the energy away, or we can stop the oscillations.”

Beyond the interest in the theoretical sense, Meystre and Bhattacharya point out that they have practical uses in mind for their system. “We hope to be able to use very cold mirrors as sensors,” says Meystre. “While the behavior of quantum mechanics is interesting from a curiosity standpoint, we can also see practical uses for this technique of mirror cooling.”

Beyond more sensitive sensors and the ability to detect and control condensate properties, Bhattacharya sees potential in one of the more popular aims of modern quantum sciences: information processing. “It is much easier to handle mirrors than to pinpoint where an atom or molecule is, and then try to manipulate it,” he points out. “This could lead to an efficient quantum computer.”

While Meystre and Bhattacharya point out that this has been done through modeling only, they also emphasize that a proof of principle has already been done by an unrelated group (who hadn’t read Meystre and Bhattacharya’s research) and available on the Los Alamos server (xxx.lanl.gov/abs/0707.1724). Additionally, Meystre and Bhattacharya believe that there is sufficient technology to establish experimental parameters for the system now.

“The uses for this mirror trapping and cooling system are going to be very exciting,” Bhattacharya insists. “For practical technology in general, and in the field of quantum physics, we have modeled something very useful.”

Copyright 2007 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: Experiment records extreme quantum weirdness

Related Stories

Experiment records extreme quantum weirdness

November 9, 2015

Researchers from the Centre for Quantum Technologies (CQT) at the National University of Singapore and the University of Seville in Spain have reported the most extreme 'entanglement' between pairs of photons ever seen in ...

Team extends the lifetime of atoms using a mirror

October 13, 2015

Researchers at Chalmers University of Technology have succeeded in an experiment where they get an artificial atom to survive ten times longer than normal by positioning the atom in front of a mirror. The findings were recently ...

Photons open the gateway for quantum networks

October 23, 2015

There is tremendous potential for new information technology based on light (photons). Photons (light particles) are very well suited for carrying information and quantum technology based on photons—called quantum photonics, ...

Recommended for you

Test racetrack dipole magnet produces record 16 tesla field

November 30, 2015

A new world record has been broken by the CERN magnet group when their racetrack test magnet produced a 16.2 tesla (16.2T) peak field – nearly twice that produced by the current LHC dipoles and the highest ever for a dipole ...

Turbulence in bacterial cultures

November 30, 2015

Turbulent flows surround us, from complex cloud formations to rapidly flowing rivers. Populations of motile bacteria in liquid media can also exhibit patterns of collective motion that resemble turbulent flows, provided the ...

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.