Changing the rings: a key finding for magnetics design

August 3, 2007

Researchers at the National Institute of Standards and Technology’s Center for Nanoscale Science and Technology have done the first theoretical determination of the dominant damping mechanism that settles down excited magnetic states—“ringing” in physics parlance—in some key metals.

Their results, published in the Physical Review Letters, point to more efficient methods to predict the dynamics of magnetic materials and to improve the design of key materials for magnetic devices.

The ability to control the dynamics of magnetic materials is critical to high-performance electronic devices such as magnetic field sensors and magnetic recording media. In a computer’s magnetic storage—like a hard disk—a logical bit is represented by a group of atoms whose electron “spins” all are oriented in a particular direction, creating a minute magnetic field.

To change the bit from, say, a one to a zero, the drive’s write head imposes a field in a different direction at that point, causing the electrons to become magnetically excited. Their magnetic poles begin precessing—the same motion seen in a child’s spinning top when it’s tilted to one side and begins rotating around a vertical axis. Damping is what siphons off this energy, allowing the electron spins to settle into a new orientation. For fast write speeds—magnetization reversals in a nanosecond or faster—a hard disk wants strong damping.

On the other hand, damping is associated with noise and loss of signal in the same drive’s read heads—and other magnetic field sensors—so they need materials with very weak damping.

The design of improved magnetic devices, particularly at the nanoscale, requires a palette of materials with tailored damping rates, but unfortunately the damping mechanism is not well understood. Important damping mechanisms have not been identified, particularly for the so-called intrinsic damping seen in pure ferromagnetic materials, and no quantitative calculations of the damping rate have been done, so the search for improved materials must be largely by trial and error.

To address this, CNST researchers calculated the expected damping parameters for three commonly used ferromagnetic elements, iron, cobalt and nickel, based on proposed models that link precession damping in a complex fashion with the creation of electron-hole pairs in the metal that ultimately dissipate the magnetic excitation energy as vibration energy in the crystal structure. The calculation is extremely complex, both because of the intrinsic difficulty of accounting for the mutual interactions of large numbers of electrons in a solid, and because the phenomenon is inherently complex, with at least two different and competing mechanisms. Damping rises with temperature in all three metals, for example, but in cobalt and nickel it also rises with decreasing temperature at low temperatures.

By comparing the calculated damping effects with experimental measurements, the team was able to identify the dominant mechanisms behind intrinsic damping in the three metals, which at room temperature and above is tied to electron energy transitions. The results, they say, point to materials design techniques that could be used to optimize damping in new magnetic alloys.

Citation: K. Gilmore, Y. U. Idzerda and M. D. Stiles. Identification of the dominant precession-damping mechanism in Fe, Co, and Ni by first-principles calculations. Physical Review Letters 99, 027204 (13 July 2007).

Source: National Institute of Standards and Technology

Explore further: Structurally reinforced hydrogel material developed using electrostatic repulsive force between nanosheets

Related Stories

Superconducting circuits, simplified

October 17, 2014

Computer chips with superconducting circuits—circuits with zero electrical resistance—would be 50 to 100 times as energy-efficient as today's chips, an attractive trait given the increasing power consumption of the massive ...

Computer models show device size matters

February 12, 2014

Scientists hope that patterning magnetic materials with nanometer-scale structures will help the development of non-volatile electronic memories with large storage capacities and no moving parts. So-called magnetoresistive ...

Using heat to make magnets

October 17, 2013

EPFL scientists have provided the first evidence ever that it is possible to generate a magnetic field by using heat instead of electricity. The phenomenon is referred to as the Magnetic Seebeck effect or 'thermomagnetism'.

Recommended for you

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

Rogue wave theory to save ships

July 29, 2015

Physicists have found an explanation for rogue waves in the ocean and hope their theory will lead to devices to warn ships and save lives.

Researchers build bacteria's photosynthetic engine

July 29, 2015

Nearly all life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Oxygen-producing plants and cyanobacteria perfected this process 2.7 billion years ago. But the first photosynthetic ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.