Females avoid incest by causing male relatives to leave home

August 15, 2007

Researchers at the University of Sheffield in the UK and Leibniz Institute for Zoo and Wildlife Research (IZW) in Berlin, Germany, have found that female hyenas avoid inbreeding with their male relatives by giving them little choice but to leave their birth group.

Animals generally avoid inbreeding because it is genetically hazardous. They can either do this by moving away from home or, like humans, by learning who their relatives are and not mating with them.

Like most mammals though, male hyenas do not contribute to the rearing of their offspring, making it highly unlikely that females know who their father is. Instead males decide to leave the group in which they were raised, resulting in a low level of inbreeding.

But until now, little was known about why the males and not the females decided to move away from home. The new research on spotted hyenas, published in Nature this week, shows that the reason most males move from their natal group is because of female mate-choice – the rules females use when choosing which of the many male group members will sire their offspring.

The researchers found that young females prefer to mate with ‘new arrivals’ in a group - those males born into, or who joined, the group after the female was born. Older females also apply this rule and in addition prefer males that have built friendly relationships with them for several years. These mate preferences of females mean that males have to choose groups with a high number of young females if they want to reproduce successfully.

The research showed that males usually chose groups with the highest number of young females, giving them access to many females and enabling them to sire a higher number of offspring in the long term. Most males end up dispersing because a higher number of young females usually occurs elsewhere, rather than in the group in which they were raised.

Professor Burke, from the Department of Animal and Plant Sciences at the University of Sheffield, said: “This is the first time a study has shown that in mammal species the system is driven by females using very simple rules to avoid breeding incestuously.”

Dr Oliver Höner from the IZW added: “The results of the study were only possible because we were able to monitor the decisions made by male hyenas in all eight resident hyena groups on the floor of the Ngorongoro Crater. Through this research we could genetically determine paternity for most offspring produced in a 10-year monitoring period.”

Source: University of Sheffield

Explore further: Scientists show how timed feeding could help fight "metabolic jetlag"

Related Stories

Federal officials investigate walrus deaths in Alaska

September 25, 2015

Two groups of Pacific walrus have been found dead along the Chukchi Sea northwest of Alaska. One incident is the subject of a criminal investigation. The other has been blamed on natural causes.

Using flies to understand how pregnancy drives food cravings

September 24, 2015

Researchers at the Champalimaud Centre for the Unknown in Lisbon discovered that fruit flies share the human craving for salt during pregnancy and shed light on how the nervous system controls this behaviour. The study is ...

Recommended for you

Perfectly accurate clocks turn out to be impossible

October 7, 2015

Can the passage of time be measured precisely, always and everywhere? The answer will upset many watchmakers. A team of physicists from the universities of Warsaw and Nottingham have just shown that when we are dealing with ...

The topolariton, a new half-matter, half-light particle

October 7, 2015

A new type of "quasiparticle" theorized by Caltech's Gil Refael, a professor of theoretical physics and condensed matter theory, could help improve the efficiency of a wide range of photonic devices—technologies, such as ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.