Evolution is driven by gene regulation

Aug 09, 2007

It is not just what’s in your genes, it’s how you turn them on that accounts for the difference between species — at least in yeast — according to a report by Yale researchers in this week’s issue of Science.

“We’ve known for a while that the protein coding genes of humans and chimpanzees are about 99 percent the same,” said senior author Michael Snyder, the Cullman Professor of Molecular Cellular and Developmental Biology at Yale. “The challenge for biologists is accounting for what causes the substantial difference between the person and the chimp.”

Conventional wisdom has been that if the difference is not the gene content, the difference must be in the way regulation of genes produces their protein products.

Comparing gene regulation across similar organisms has been difficult because the nucleotide sequence of DNA regulatory regions, or promoters, are more variable than the sequences of their corresponding protein-coding regions, making them harder to identify by standard computer comparisons.

“While many molecules that bind DNA regulatory regions have been identified as transcription factors mediating gene regulation, we have now shown that we can functionally map these interactions and identify the specific targeted promoters,” said Snyder. “We were startled to find that even the closely related species of yeast had extensively differing patterns of regulation.”

In this study, the authors found the DNA binding sites by aiming at their function, rather than their sequence. First, they isolated transcription factors that were specifically bound to DNA at their promoter sites. Then, they analyzed the sequences that were isolated to determine the similarities and differences in regulatory regions between the different species.

“By using a group of closely and more distantly related yeast whose sequences were well documented, we were able to see functional differences that had been invisible to researchers before,” said Snyder. “We expect that this approach will get us closer to understanding the balance between gene content and gene regulation in the question of human-chimp diversity.”

Source: Yale University

Explore further: Thousands worldwide march against Monsanto and GM crops

Related Stories

Decoding the cell's genetic filing system

Apr 22, 2015

A fully extended strand of human DNA measures about five feet in length. Yet it occupies a space just one-tenth of a cell by wrapping itself around histones—spool-like proteins—to form a dense hub of ...

New target for anticancer drugs—RNA

Apr 06, 2015

Most of today's anticancer drugs target the DNA or proteins in tumor cells, but a new discovery by University of California, Berkeley, scientists unveils a whole new set of potential targets: the RNA intermediaries ...

Detailing heterochromatin formation at the onset of life

Apr 01, 2015

Antoine Peters and his group at the Friedrich Miescher Institute for Biomedical Research (FMI) have elucidated the mechanisms controlling the packaging of chromatin in the early embryo. They have identified ...

Recommended for you

Birds 'weigh' peanuts and choose heavier ones

May 23, 2015

Many animals feed on seeds, acorns or nuts. The common feature of these are that they have shells and there is no direct way to know what's inside. How do the animals know how much and what quality of food ...

Q&A: Why are antibiotics used in livestock?

May 22, 2015

Wal-Mart, the world's biggest retailer, is the latest company to ask its suppliers to curb the use of antibiotics in farm animals. Here's a rundown of what's driving the decision: ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.