Chemists using light-activated molecules to kill cancer cells

August 8, 2007

A key challenge facing doctors as they treat patients suffering from cancer or other diseases resulting from genetic mutations is that the drugs at their disposal often don’t discriminate between healthy cells and dangerous ones -- think of the brute-force approach of chemotherapy, for instance. To address this challenge, Florida State University researchers are investigating techniques for using certain molecules that, when exposed to light, will kill only the harmful cells.

Igor V. Alabugin is an associate professor of chemistry and biochemistry at FSU. He specializes in a branch of chemistry known as photochemistry, in which the interactions between atoms, small molecules and light are analyzed.

“When one of the two strands of our cellular DNA is broken, intricate cell machinery is mobilized to repair the damage,” he said. “Only because this process is efficient can humans function in an environment full of ultraviolet irradiation, heavy metals and other factors that constantly damage our cells.”

However, a cell that sustains so much damage that both DNA strands are broken at the same time eventually will commit suicide -- a process known as apoptosis.

“In our research, we’re working on ways to induce apoptosis in cancer cells -- or any cells that have harmful genetic mutations -- by damaging both of their DNA strands,” Alabugin said. “We have found that a group of cancer-killing molecules known as lysine conjugates can identify a damaged spot, or ‘cleavage,’ in a single strand of DNA and then induce cleavage on the DNA strand opposite the damage site. This ‘double cleavage’ of the DNA is very difficult for the cell to repair and typically leads to apoptosis.”

What’s more, the lysine conjugates’ cancer-killing properties are manifested only when they are exposed to certain types of light, thus allowing researchers to activate them at exactly the right place and time, when their concentration is high inside of the cancer cells, Alabugin said.

“So, for example, doctors treating a patient with an esophageal tumor might first inject the tumor with a drug containing lysine conjugates,” he said. “Then they would insert a fiber-optic scope down the patient’s throat to shine light on the affected area.” The light exposure would activate the drug, leading to double-strand DNA damage in the cancerous cells -- and cell death -- for as much as 25 percent to 30 percent of the cells in the tumor,at a rate that rivals in efficiency any of the highly complex and rare DNA-cleaving molecules produced by nature, Alabugin said -- and, perhaps just as importantly, avoids damage to healthy cells.

For tumors located deeper within the body, he pointed to other studies showing that a pulsed laser device can be used to penetrate muscle and other tissues, thereby activating the drugs using near-infrared beams of light.

As proof of principle to the idea that lysine conjugates possess anti-cancer activity, Alabugin collaborated with cancer biologist Dr. John A. Copland of the Mayo Clinic College of Medicine in Jacksonville, Fla. In their tests, several of the molecules demonstrated little effect upon cultured cancer cells -- in this case, metastatic human kidney cancer cells -- without light, but upon phototherapy activation killed more than 90 percent of the cancer cells with a single treatment. Future work will include demonstrating anti-cancer activity in an animal model. Successful completion of the preclinical studies then could lead to clinical trials with human patients.

Citation: “DNA Damage-Site Recognition by Lysine Conjugates,” was published in the July 23 issue of the Proceedings of the National Academy of Sciences.

Source: Florida State University

Explore further: Study solves mystery of cell powerhouse's balance of calcium

Related Stories

New blood test may expand scope of liquid biopsies

January 14, 2016

When cells die, they don't vanish without a trace. Instead, they leave behind their fingerprints in the form of cell-free DNA. In people, these tiny fragments of DNA can be found in the bloodstream.

One, two, four, eight – lessons from dividing cells

January 6, 2016

The IMCB was established in 1987 at the National University of Singapore before becoming an autonomous research institute of A*STAR and moving to Biopolis in 2004. The IMCB strives to maintain the scientific excellence of ...

Recommended for you

Superconductors could detect superlight dark matter

February 9, 2016

(Phys.org)—Many experiments are currently searching for dark matter—the invisible substance that scientists know exists only from its gravitational effect on stars, galaxies, and other objects made of ordinary matter. ...

Monkey skull study suggests brain evolved in spurts

February 9, 2016

(Phys.org)—A small team of researchers from Brazil and Argentina has found via skull analysis and modeling that a kind of new-world monkey appears to have undergone changes in individual parts of its brain during evolutionary ...

The 'glitching' of the Vela pulsar

February 9, 2016

(Phys.org)—A team of Australian astronomers has conducted an intensive observation of a curious young pulsar to investigate changes in its rotation frequency known as 'glitching'. Located about 910 light years from the ...

Engineers create custom tuning knobs to turn off any gene

February 9, 2016

Factory managers can improve productivity by telling workers to speed up, slow down, or stop doing tangential tasks while assembling widgets. Unfortunately for synthetic biologists attempting to produce pharmaceuticals, microbes ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.