Bacteria genome research could save orchards and assist blood transfusions

Aug 20, 2007

Research led by the University Warwick into the genomes of two bacteria could save orchards from a previously almost incurable disease and also assist in treating complications arising from human blood transfusions.

The researchers were interested in how the bacteria naturally produced a family of chemicals called desferrioxamines. Desferrioxamine E is produced by the bacterium Erwinia amylovora. The bacterium uses it to damage apple or pear trees and acquire iron from them.

This allows it to establish an infection that leads to the economically-damaging agricultural disease known as “Fire Blight” that can sweep through an orchard if the infected trees are not removed. The bacterium Streptomyces coelicolor produces desferrioxamine B, which is used to treat iron overload in humans – for instance following extensive blood transfusions.

By studying the genomes of the two bacteria, the researchers were able to work out that each uses a similar biochemical pathway to produce desferrioxamines. In both cases they use a “remarkable” trimerisation-macrocyclisation reaction cascade in the key step. The researchers purified the enzyme responsible and showed that it could catalyse the reaction cascade in a test tube.

The current industrial process to create desferrioxamine B relies on the fermentation of the bacterium Streptomyces pilosus. The Warwick-led research has identified how Streptomyces bacteria create it using only four enzyme catalysts and four different building blocks. In contrast, the laboratory synthesis of desferrioxamine B requires 10 steps and uses numerous chemicals. Harnessing the enzymes may result in much cheaper pharmaceuticals based on desferrioxamine B and manipulating them could lead to the creation of new orally-active analogues of this important pharmaceutical.

The new understanding of how desferrioxamine E is created by Erwinia amylovora opens the way for the creation of new chemical inhibitors that may prevent this bacterium from inflicting Fire Blight on orchards

Source: University of Warwick

Explore further: Researchers discover new mechanism of DNA repair

Related Stories

Research shows 'mulch fungus' causes turfgrass disease

5 hours ago

Inadvertently continuing a line of study they conducted about 15 years ago, a team of Penn State researchers recently discovered the causal agent for an emerging turfgrass disease affecting golf courses around ...

Study on pesticides in lab rat feed causes a stir

7 hours ago

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

Experiments open window on landscape formation

7 hours ago

University of Oregon geologists have seen ridges and valleys form in real time and—even though the work was a fast-forwarded operation done in a laboratory setting—they now have an idea of how climate ...

To conduct, or to insulate? That is the question

7 hours ago

A new study has discovered mysterious behaviour of a material that acts like an insulator in certain measurements, but simultaneously acts like a conductor in others. In an insulator, electrons are largely stuck in one place, ...

Recommended for you

Researchers discover new mechanism of DNA repair

16 hours ago

The DNA molecule is chemically unstable giving rise to DNA lesions of different nature. That is why DNA damage detection, signaling and repair, collectively known as the DNA damage response, are needed.

The math of shark skin

Jul 03, 2015

"Sharks are almost perfectly evolved animals. We can learn a lot from studying them," says Emory mathematician Alessandro Veneziani.

Cuban, US scientists bond over big sharks

Jul 03, 2015

Somewhere in the North Atlantic right now, a longfin mako shark—a cousin of the storied great white—is cruising around, oblivious to the yellow satellite tag on its dorsal fin.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.