What, oh, what are those actinides doing?

August 20, 2007
What, oh, what are those actinides doing?
Researchers are discovering how actinides such as uranium in solution interact with magnetite and other mineral surfaces. Credit: Pacific Northwest National Laboratory

Researchers at Pacific Northwest National Laboratory are uniting theory, computation and experiment to discover exactly how heavy elements, such as uranium and technetium, interact in their environment.

As part of that effort, scientists have combined sensitive experimental measurements with fi rst principle electronic structure calculations to measure, and to really understand, the structural and bonding parameters of uranyl, the most common oxidation state of uranium in systems containing water.

The insights were achieved by PNNL scientist Bert de Jong and associates Gary Groenewold of Idaho National Laboratory and Michael Van Stipdonk of Wichita State University, employing the supercomputing resources of the William R. Wiley Environmental Molecular Sciences Laboratory, a Department of Energy national scientifi c user facility located at PNNL.

The large number and behavior of electrons in heavy elements makes most of them extremely diffi cult to study. De Jong said that advancements in computing power and theory are enabling computational actinide chemistry to contribute significantly to the understanding and interpretation of experimental chemistry data, as well as to predicting the chemical and physical properties of heavy transition metal, lanthanide and actinide complexes.

“Now we can make sure we get the right answer for the right reason,” de Jong said, adding that results obtained from the calculations are an invaluable supplement to current, very expensive and often hazardous experimental studies.

Researchers are discovering how actinides such as uranium in solution interact with magnetite and other mineral surfaces.

Discoveries made using the new capabilities available to the growing field of computational actinide chemistry could have wide impact, from radioactive waste and cleanup challenges to the design and operation of future nuclear facilities.

Bert De Jong will make his presentation at the 234th American Chemical Society National Meeting in Boston.

Source: DOE/Pacific Northwest National Laboratory

Explore further: A most singular nano-imaging technique (Update)

Related Stories

A most singular nano-imaging technique (Update)

July 16, 2015

Just as proteins are one of the basic building blocks of biology, nanoparticles can serve as the basic building blocks for next generation materials. In keeping with this parallel between biology and nanotechnology, a proven ...

'Mind the gap' between atomically thin materials

November 23, 2014

In subway stations around London, the warning to "Mind the Gap" helps commuters keep from stepping into empty space as they leave the train. When it comes to engineering single-layer atomic structures, minding the gap will ...

Recommended for you

Innovations from the wild world of optics and photonics

August 2, 2015

Traditional computers manipulate electrons to turn our keystrokes and Google searches into meaningful actions. But as components of the computer processor shrink to only a few atoms across, those same electrons become unpredictable ...

Shedding light on millipede evolution

August 2, 2015

As an National Science Foundation (NSF)-funded entomologist, Virginia Tech's Paul Marek has to spend much of his time in the field, hunting for rare and scientifically significant species. He's provided NSF with an inside ...

Better together: graphene-nanotube hybrid switches

August 2, 2015

Graphene has been called a wonder material, capable of performing great and unusual material acrobatics. Boron nitride nanotubes are no slackers in the materials realm either, and can be engineered for physical and biological ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.