A walking robot goes mountaineering

July 13, 2007

The human gait is a marvel of coordination. All aspects of movement control – from the angle of the knee joints to the momentum of the hip up to the balance point of the torso – need to be meticulously adjusted. In addition, the gait is adaptable to different environments. Walking on ice is different from walking on solid ground, walking uphill is different from downhill.

In their study, publishing in PLoS Computational Biology July 13, 2007, scientists around Florentin Wörgötter, Bernstein Center for Computational Neuroscience at the University of Göttingen, have simulated the neuronal principles that form the basis of this adaptivity in a walking robot.

"RunBot", as it is called, lives up to its name – it holds the world record in speed walking for dynamic machines. Now its inventors have expanded its repertoire.

With an infrared eye it can detect a slope on its path and adjust its gait on the spot. Just as a human, it leans forwards slightly and uses shorter steps. It can learn this behavior using only a few trials.

The robots ability to abruptly switch from one gait to the other is due to the hierarchical organization of the movement control. In this respect, it resembles that of a human and can hold as a human model. On the lower hierarchical levels, movement is based on reflexes driven by peripheral sensors. Control circuits ensure that the joints are not overstretched or that the next step is initiated as soon as the foot touches the ground.

Only when the gait needs to be adapted, higher centers of organization step in – a process triggered by the human brain or, in case of the robot, by its infrared eye leading on to a simpler neural network. Because of the hierarchical organization adjustment of the gait can be achieved by changing only a few parameters. Other factors will be automatically tuned through the regular circuits.

At its first attempt to climb a slope, RunBot will fall over backwards, as it has not yet learned to react to its visual input with a change in gait. But just like children, RunBot learns from its failures, leading to a strengthening of the contact between the eye and the sites of movement control. Only once these connections are established, step length and body posture are controllable by the visually induced signal. The steeper the slope, the stronger RunBot will adapt its gait.

Source: Public Library of Science

Explore further: Gaming camera could aid MS treatment

Related Stories

Gaming camera could aid MS treatment

August 15, 2016

A commonly used device found in living rooms around the world could be a cheap and effective means of evaluating the walking difficulties of multiple sclerosis (MS) patients.

Homo erectus walked as we do

July 12, 2016

Fossil bones and stone tools can tell us a lot about human evolution, but certain dynamic behaviours of our fossil ancestors – things like how they moved and how individuals interacted with one another – are incredibly ...

Robot mimics vertebrate motion

June 29, 2016

Based on X-ray videos, EPFL scientists have invented a new robot that mimics the way salamanders walk and swim with unprecedented detail: a tool for understanding the evolution of vertebrate locomotion.

Recommended for you

First stars formed even later than previously thought

August 31, 2016

ESA's Planck satellite has revealed that the first stars in the Universe started forming later than previous observations of the Cosmic Microwave Background indicated. This new analysis also shows that these stars were the ...

Ancient Egyptians used metal in wooden ships

August 31, 2016

A piece of wood recovered at a dig near the Great Pyramid of Giza shows for the first time that ancient Egyptians used metal in their boats, archaeologists said Wednesday.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.