Queen's chemists work with NASA to develop liquids for lunar telescope

Jul 10, 2007

Chemists at Queen's University Belfast are working with NASA and scientists in Canada and the United States to design a telescope that can be stationed on the Moon.

The instrument will have a mirror consisting of a liquid with a thin metal film on its surface that rotates to form a bowl shape, known as a parabola. When the liquid spins in a perfect parabola, it will be able to reflect infrared light from distant stars and galaxies that cannot be picked up by telescopes on Earth because of atmospheric interference and light pollution.

Telescopes with parabolic liquid mirrors are much cheaper and easier to make and maintain than conventional telescopes with glass mirrors. Liquid mirror telescopes employed in observatories on Earth traditionally use mercury as the reflective liquid. However, mercury cannot be used for a lunar liquid mirror telescope as the high-vacuum conditions on the Moon would cause the mercury to boil.

The Queen's team has been investigating the possibility of preparing a reflective liquid for the telescope consisting of an ionic liquid that can be coated on its surface with a thin layer of a reflective metal.

Ionic liquids are liquid salts. They consist essentially of ions (electrically-charged atoms or groups of atoms). Ionic liquids generally have negligible vapour pressures which mean that they do not boil, even under vacuum. Many ionic liquids do not freeze at the sub-zero temperatures found on the Moon. They have the added advantage that they are much lighter than mercury - a key consideration for transporting a telescope to the Moon.

In a report in the June 21 issue of the science journal Nature, the Belfast, Canadian, and U.S. scientists showed that a commercially-available ionic liquid can be coated with silver and that the coated fluid is stable over several months.

"The discovery that an ionic liquid can be coated with a very thin metal layer is a major breakthrough," said chemistry professor, Ken Seddon, who is one of the authors of the report and Director of Queen's University Ionic Liquids Laboratories (QUILL).

The authors also reported that the ionic liquid does not evaporate in a vacuum and remains liquid at temperatures down to 175 K (-98oC). The lunar liquid mirror telescope, however, will require a liquid with an even lower melting point.

Fortunately, there is a phenomenal choice of ionic liquids. More than 1,500 have been described in the scientific literature over the past ten years or so and about 500 are available commercially. According to Seddon, around one million simple ionic liquids are theoretically possible and they can be designed for a wide variety of applications. But most have yet to be prepared.

"We now plan to design and prepare ionic liquids with melting points of around 100 K that can be coated with a reflective metal for the lunar telescope" said Assistant Director of QUILL, Maggel Deetlefs.

Source: Queen's University Belfast

Explore further: Reviving cottonseed meals adhesives potential

Related Stories

New composite material as CO2 sensor

Jun 08, 2015

A new material changes its conductivity depending on the concentration of CO2 in the environment. The researchers who developed it have utilized the material to produce a miniature, simply constructed sensor.

Artificial muscles get graphene boost

May 22, 2015

Researchers in South Korea have developed an electrode consisting of a single-atom-thick layer of carbon to help make more durable artificial muscles.

A nano-transistor assesses your health via sweat

May 15, 2015

Made from state-of-the-art silicon transistors, an ultra-low power sensor enables real-time scanning of the contents of liquids such as perspiration. Compatible with advanced electronics, this technology ...

Recommended for you

New CMI process recycles magnets from factory floor

7 hours ago

A new recycling method developed by scientists at the Critical Materials Institute, a U.S. Department of Energy Innovation Hub led by the Ames Laboratory, recovers valuable rare-earth magnetic material from ...

Chemists characterize 3-D macroporous hydrogels

10 hours ago

Carnegie Mellon University chemists have developed two novel methods to characterize 3-dimensional macroporous hydrogels—materials that hold great promise for developing "smart" responsive materials that ...

Substrates change nanoparticle reactivity

16 hours ago

(Phys.org)—Nanoscale materials tend to behave differently than their bulk counterparts. While there are many theories as to why this happens, technological advances in scanning tunneling microscopy (STM) ...

Research could help point the finger at drug dealers

16 hours ago

An innovative technology pioneered by Sheffield Hallam University academics can detect the presence of a range of illegal and designer drugs from a single fingerprint, which could be a valuable new tool in bringing drug dealers ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.