New Physics Device May Revolutionize Cancer Treatment

July 17, 2007
Innovative Physics Device May Revolutionize Cancer Treatment
Artist's concept of a compact proton therapy system based on a "dielectric wall accelerator." Credit: Lawrence Livermore National Laboratory

Using innovative physics, researchers have proposed a system that may one day bring proton therapy, a state-of-the-art cancer treatment method currently available only at a handful of centers, to radiation treatment centers and cancer patients everywhere.

Thomas R. Mackie, a professor at the University of Wisconsin and co-founder of the radiation therapy company TomoTherapy, will present this new design at next week's annual meeting of the American Association of Physicists in Medicine in Minneapolis.

Compared to the x rays conventionally used in radiation therapy, protons are potentially more effective, as they can deposit more cell-killing energy in their tumor targets and less in surrounding healthy tissue. However, to kill tumors, the protons must be accelerated to sufficiently high energies, which currently must be achieved in large, expensive devices called cyclotrons or synchrocyclotrons that cost hundreds of millions of dollars and occupy a room the size of basketball courts.

At the meeting, Mackie and his colleagues will present a proton-therapy design based on a much smaller device known as a "dielectric wall accelerator" (DWA). Mackie is part of a multidisciplinary team that includes his institutions as well as Lawrence Livermore National Laboratory and the University of California, Davis.

The DWA, currently being built as a prototype at Livermore, can accelerate protons to up to 100 million electron volts in just a meter. A two-meter DWA could potentially supply protons of sufficiently high energy to treat all tumors, including those buried deep in the body, while fitting in a conventional radiation treatment room.

The DWA is a hollow tube whose walls consist of a very good insulator (known as a dielectric). When most of the air is removed from the tube to create a vacuum, the tube can structurally withstand the very high electric-field gradations necessary for accelerating protons to high energies in a short distance.

In addition to its smaller size, a DWA-based proton therapy system would have another benefit—it could vary both proton energy and proton-beam intensity, two variables that cannot both be adjusted at the same time in existing proton-treatment facilities. This capability could lead to "intensity-modulated proton therapy" (IMPT), the proton version of the x-ray-based intensity modulated radiation therapy (IMRT) technique which has become a popular method for delivering precise radiation doses to the parts of a tumor.

Mackie cautions that clinical trials of the system are at least five years away. But if the DWA approach proves feasible, protons may eventually represent a widespread, rather than limited, option for treating cancer.

Source: American Institute of Physics

Explore further: Adding proton therapy 'boost' to X-ray radiation therapy reduces prostate cancer recurrences

Related Stories

Proton treatment could replace x-ray use in radiation therapy

August 28, 2006

Scientists at MIT, collaborating with an industrial team, are creating a proton-shooting system that could revolutionize radiation therapy for cancer. The goal is to get the system installed at major hospitals to supplement, ...

Proton therapy is well-tolerated in prostate cancer patients

November 2, 2009

Proton beam therapy can be safely delivered to men with prostate cancer and has minimal urinary and rectal side effects, according to a study presented November 2, 2009, at the American Society for Radiation Oncology's 51st ...

Compact proton therapy for fight against cancer

June 10, 2014

The future face of modern-day anti-cancer therapy based on charged particles like protons could potentially involve using laser accelerators. However, these facilities will need to be reduced in terms of both size and cost ...

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.