New Patent Dramatically Improves DNA Analysis

July 18, 2007

A basic scientist in the Department of Surgery at Jefferson Medical College and the Kimmel Cancer Center at Jefferson has shared a patent on what may someday be a ubiquitous tool in DNA analysis. The discovery could have a range of applications, from forensics to cloning to bioterrorism.

Jonathan Brody, Ph.D., assistant professor of surgery and colleague Scott Kern, M.D., at Johns Hopkins University in Baltimore, have developed a technique that makes a DNA separation technique called electrophoresis five times faster and less expensive than now is possible. “It could save millions of dollars a year, just by speeding up processes,” says Dr. Brody.

Most molecular biology-based techniques involve electrophoresis, the main way scientists analyze DNA. But the ingredients involved in the process have been unchanged for 30 years. “It turns out that all of the buffers people have been using for 30 years have been the wrong choice,” he says, because the standard method is more expensive and takes longer. “This solution that we found is literally a better, faster way of doing it.”

According to Dr. Brody, the patent hinges on the pair’s finding, through trial and error, that the compound lithium boric acid in DNA electrophoresis is the optimal solution for this process.

In electrophoresis, solutions conduct electric current necessary to separate negatively charged DNA molecules. DNA is put through jellylike “gels,” and smaller DNA molecules move more quickly than larger ones as the current passes through. The researchers found, after much experimentation, that lithium boric acid would be a better buffer solution for the process than current 30-year-old methods.

“A process that normally takes around one and a half, two hours to do can be done in 10 minutes – in some instances it can be 10-fold faster,” he explains.

“A lot of our science is abstract and incremental,” he notes. “How often do you get a chance to impact nearly every field in science at once"”

According to Dr. Brody, the finding is “not just a useful discovery for cancer research, but also for the neurosciences, developmental biology – increasingly, many fields involve DNA analysis.” The process has already been gaining acceptance and use internationally.

“It’s becoming more widespread, but like anything in science, it will take time to become a fixture,” he says. “Scientists are like most people: we don’t necessarily like to change.”

Source: Thomas Jefferson University

Explore further: Great Southern research receives technical boost

Related Stories

Great Southern research receives technical boost

September 11, 2015

The mountain bell shrub, which is partly named after Charles Darwin's grandfather, can be examined at a molecular level for the first time in Albany after the installation of a state-of-the-art genetics laboratory.

DNA fingerprinting simplified

May 13, 2008

Agarose gel electrophoresis? Most teenagers wouldn’t have a clue what this scientific term means, but middle school student Andrew Trigiano knows the protocol inside and out. When Andrew was 12, his father Robert Trigiano, ...

Rapid, Low-Cost DNA Testing

January 8, 2007

Professor Lewis Rothberg of the University of Rochester Chemistry Department received a NYSTAR grant in August 2006 to continue working on a recent discovery by Huixiang Li, a research associate in his group: how to rapidly ...

Rapid analysis of DNA damage now possible

May 3, 2010

( -- Our DNA is under constant attack from many sources: Radiation, ultraviolet light, and contaminants in our food and in our environment can all wreak havoc on our genetic material, potentially leading to cancer ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.