Molecular detectors may refine cancer treatment

July 19, 2007

University of Florida researchers have successfully used molecular probes to detect subtle differences in leukemia cells from patient samples, an achievement that could lead to more effective ways to diagnose and treat cancer.

The strategy, described in a recent issue of Clinical Chemistry, involves engineering short, single strands of DNA or RNA called aptamers to seek out and bind with specific proteins in body fluids.

UF scientists designed the aptamers to bind to cells and molecules associated with leukemia, a cancer of the blood and bone marrow that annually claims about 21,000 lives in the United States, according to the National Cancer Institute.

Researchers also found the first evidence that slight molecular differences can exist even within the same samples from patients with adult T-cell leukemia, a cancer that strikes the immune system’s own protective cells.

“Our selective aptamers clearly confirm there are several subcategories of adult T-cell leukemia,” said Weihong Tan, Ph.D., a UF Research Foundation professor of chemistry at the College of Liberal Arts & Sciences and a member of the UF Shands Cancer Center. “At present, doctors have had only their experience to rely upon to determine the best treatment for these patients. Our findings will give doctors an effective tool to more precisely make a diagnosis and to tailor treatments.”

UF researchers built designer probes using cancer cells as a template, capitalizing on the ability of aptamers to fold into well-defined, three-dimensional structures that bind to targets. The process relies on the fact that different types of cells exhibit unique surface features, so aptamers can recognize and bind with these target cells — and only these cells — even in the presence of other, closely related cells.

The scientists found that three of six aptamers they selected for study adhered to all types of cancerous cells but ignored normal blood and bone marrow cells. In combination, the six aptamers produced distinct patterns that characterize different cancer cells, suggesting that the technique could be useful to detect the molecular fingerprints of cancer in people.

The next step toward developing a clinical diagnostic tool involves matching patient data with these molecular profiles. The research team — working with W. Stratford May, M.D., Ph.D., director of the UF Shands Cancer Center, and Ying Li, M.D., Ph.D., a clinical assistant professor of pathology, immunology and laboratory medicine in the College of Medicine — has analyzed additional patient samples to build a database that may one day help doctors select the best treatment strategies.

“We are linking the medical histories of patients to specific aptamer binding patterns,” said Tan, who is also affiliated with the UF Genetics Institute. “We should soon be able to say patients who belong to this specific molecular binding pattern should have ‘such-and-such’ treatment. Different molecular patterns of cancer patients will point to different treatments.”

Current tests to diagnose leukemia use antibodies, proteins that have the ability to identify harmful substances. But such methods do not capture subtle variances in the molecular signature of cancer cells.

Once an aptamer probe has proved its utility, it can be inexpensively reproduced in a DNA synthesizer.

“Physical scientists mostly use cultured cellular models to demonstrate a principal, and then we leave the findings behind for the biological scientists to use — if they want,” Tan said. “But through collaboration we have pushed the demonstration through to an almost clinical application.”

Source: University of Florida

Explore further: Sensory illusion causes cells to self-destruct

Related Stories

Sensory illusion causes cells to self-destruct

November 19, 2015

Magic tricks work because they take advantage of the brain's sensory assumptions, tricking audiences into seeing phantoms or overlooking sleights of hand. Now a team of UC San Francisco researchers has discovered that even ...

Scientists reveal structure of key cancer target enzyme

November 18, 2015

A team from the University of York has published research unveiling the 3-D structure of human heparanase, a sugar-degrading enzyme which has received significant attention as a key target in anti-cancer treatments.

Novel technology vastly improves CRISPR/Cas9 accuracy

November 18, 2015

A new CRISPR/Cas9 technology developed by scientists at the University of Massachusetts Medical School is precise enough to surgically edit DNA at nearly any genomic location, while avoiding potentially harmful off-target ...

RNA-based drugs give more control over gene editing

November 16, 2015

In just the past few years, researchers have found a way to use a naturally occurring bacterial system known as CRISPR/Cas9 to inactivate or correct specific genes in any organism. CRISPR/Cas9 gene editing activity runs continuously, ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

( -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.