Magnetic tape analysis 'sees' tampering in detail

July 23, 2007
Magnetic tape analysis 'sees' tampering in detail
This image, produced by the new NIST forensic tape analysis system, clearly reveals an overdubbing. The new recording is visible from the left bottom of the image to about 188 millimeters on the distance counter, the large smudge at 216 mm was made by the erase head, and the original recording is visible starting at about 220 mm. Credit: Credit: NIST

The National Institute of Standards and Technology has developed an improved version of a real-time magnetic microscopy system that converts evidence of tampering on magnetic audio and video tapes—erasing, overdubbing and other alterations—into images with four times the resolution previously available.

This system is much faster than conventional manual analysis and offers the additional benefit of reduced risk of contaminating the tapes with magnetic powder. NIST recently delivered these new capabilities to the Federal Bureau of Investigation (FBI) for validation as a forensic tool.

Earlier versions of this system made images with a resolution of about 400 dots per inch (dpi).

The new system uses four times as many magnetic sensors, 256, embedded on a NIST-made silicon chip that serves as a read head in a modified cassette tape deck. The NIST read head operates adjacent to a standard read head, enabling investigators to listen to a tape while simultaneously viewing the magnetic patterns on a computer monitor. Each sensor in the customized read head changes electrical resistance in response to magnetic field patterns detected on the tape. NIST developed the mechanical system for extracting a tape from its housing and transporting it over the read heads, the electronics interface, and software that convert maps of sensor resistance measures into digital images.

The upgrade included quadrupling the image resolution to 1600 dpi, the capability to scan both video and audio tapes, complete computer control of tape handling, and the capability to digitize the audio directly from the acquired image. The software displays the audio magnetic track pattern from the tape to identify tiny features, from over-recording marks to high-intensity signals from gunshots. The system is designed to analyze analog tapes but could be converted to work with digital tapes, according to project leader David Pappas.

The new nanoscale magnetic microscope also has been used experimentally for non-destructive evaluation of integrated circuits. By mapping tiny changes in magnetic fields across an integrated circuit, the device can build up an image of current flow and densities much faster and in greater detail than the single-sensor scanners currently used by the chip industry, says Pappas.

Source: National Institute of Standards and Technology

Explore further: IBM Research Sets New Record in Magnetic Tape Data Density (w/ Video)

Related Stories

Racetrack memory

November 15, 2010

Imagine a computer equipped with shock-proof memory that's 100,000 times faster and consumes less power than current hard disks. EPFL Professor Mathias Klaui is working on a new kind of "racetrack" memory, a high-volume, ...

Study finds heat is source of 'Pioneer anomaly'

July 18, 2012

( -- The unexpected slowing of NASA’s Pioneer 10 and 11 spacecraft – the so-called “Pioneer Anomaly” – turns out to be due to the slight, but detectable effect of heat pushing back on the ...

Recommended for you

The ethics of robot love

November 25, 2015

There was to have been a conference in Malaysia last week called Love and Sex with Robots but it was cancelled. Malaysian police branded it "illegal" and "ridiculous". "There is nothing scientific about sex with robots," ...

No lens? No problem for FlatCam

November 23, 2015

How thin can a camera be? Very, say Rice University researchers who have developed patented prototypes of their technological breakthrough.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.