Genomics study provides insight into the evolution of unique human traits

July 30, 2007

Today, researchers from the University of Colorado Health Sciences Center, along with colleagues from Stanford University, report the results of a large-scale, genome-wide study to investigate gene copy number differences among ten primate species, including humans.

The study provides an overview of genes and gene families that have undergone major copy number expansions and contractions in different primate lineages spanning approximately 60 million years of evolutionary time. In the report, which appears online in Genome Research (, the scientists speculate how unique, lineage-specific gene copy number expansions and contractions in humans may underlie traits such as endurance running, higher cognitive function, and susceptibility genetic disease.

Primates first appeared on earth approximately 90 million years ago, and today, about 300 different species of primates exist. “One of the main genomic driving forces in primate evolution is gene duplication,” explains Dr. James Sikela, Professor at the University of Colorado. “To our knowledge, this study is the most comprehensive assessment of gene copy number variation across human and non-human primate species so far.”

To survey the differences in gene copy number among these species, Sikela and colleagues used DNA microarrays containing over 24,000 human genes to perform comparative genomic hybridization experiments. They compared DNA samples from humans to those of nine other primate species: chimpanzee, gorilla, bonobo, orangutan, gibbon, macaque, baboon, marmoset, and lemur. This allowed them to identify specific genes and gene families that, through evolutionary time, have undergone lineage-specific copy number gains and losses.

The authors of the report suggest that “many of the genes identified are likely to be important to lineage-specific traits found in humans and in the other primate lineages surveyed.” To illustrate this potential, the scientists highlighted several gene families that exhibited striking lineage-specific differences. In particular, the human lineage-specific copy number expansion of a gene called AQP7 could explain why humans have evolved the capacity for endurance running. AQP7, or aquaporin 7, plays a role in transporting water and glycerol across membranes. Therefore, it may facilitate the mobilization of glycogen (energy) stores during long periods of intense exercise; it may also play a role in dissipating excess heat through sweating.

The scientists also found dramatic gene copy number differences potentially associated with cognition, reproduction, immune function, and susceptibility to genetic disease.

Source: Cold Spring Harbor Laboratory

Explore further: Big brains needed carbs—The importance of dietary carbohydrate in human evolution

Related Stories

Researcher uses genes to map evolution of species

September 12, 2014

Genes, whether from apes or the trees they live in, are the storytellers of the origins of a species, according to a Texas A&M University ecosystem science and management assistant professor in College Station.

Recommended for you

What are white holes?

October 9, 2015

Black holes are created when stars die catastrophically in a supernova. So what in the universe is a white hole?

Horn of Africa drying ever faster as climate warms

October 9, 2015

The Horn of Africa has become increasingly arid in sync with the global and regional warming of the last century and at a rate unprecedented in the last 2,000 years, according to new research led by a University of Arizona ...

Could 'The Day After Tomorrow' happen?

October 9, 2015

A researcher from the University of Southampton has produced a scientific study of the climate scenario featured in the disaster movie 'The Day After Tomorrow'.

A mission to a metal world—The Psyche mission

October 9, 2015

In their drive to set exploration goals for the future, NASA's Discovery Program put out the call for proposals for their thirteenth Discovery mission in February 2014. After reviewing the 27 initial proposals, a panel of ...

The universe's most miraculous molecule

October 9, 2015

It's the second most abundant substance in the universe. It dissolves more materials than any other solvent. It stores incredible amounts of energy. Life as we know it would not be possible without it. And although it covers ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.