A First-Principles Model of Early Evolution

July 11, 2007

In a study publishing in PLoS Computational Biology, Shakhnovich et al present a new model of early biological evolution – the first that directly relates the fitness of a population of evolving model organisms to the properties of their proteins.

Key to understanding biological evolution is an important, but elusive, connection, known as the genotype-phenotype relationship, which translates the survival of entire organisms into microscopic selection for particular advantageous genes, or protein sequences. The study of Shakhnovich et al establishes such connections by postulating that the death rate of an organism is determined by the stability of the least stable of their proteins.

The simulation of the model proceeds via random mutations, gene duplication, organism births via replication, and organism deaths.

The authors find that survival of the population is possible only after a ‘’Big Bang’’ when a very small number of advantageous protein structures is suddenly discovered and exponential growth of the population ensues. The subsequent evolution of the Protein Universe occurs as an expansion of this small set of proteins through a duplication and divergence process that accompanies discovery of new proteins.

The model resolves one of the key mysteries of molecular evolution – the origin of highly uneven distribution of fold family and gene family sizes in the Protein Universe. It quantitatively reproduces these distributions pointing out their origin in biased post “Big Bang’’ evolutionary dynamics of discovery of new proteins. The number of genes in the evolving organisms depends on the mutation rate, demonstrating the intricate relationship between macroscopic properties of organisms – their genome sizes – and microscopic properties – stabilities – of their proteins.

The results of the study suggest a plausible comprehensive scenario of emergence and growth of the Protein Universe in early biological evolution.

Citation: Zeldovich KB, Chen P, Shakhnovich BE, Shakhnovich EI (2007) A first-principles model of early evolution: Emergence of gene families, species, and preferred protein folds. PLoS Comput Biol 3(7): e139. doi:10.1371/journal.pcbi.0030139
compbiol.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pcbi.0030139

Source: PLOS

Explore further: Bleach a possible key to life on earth

Related Stories

Bleach a possible key to life on earth

July 23, 2015

Hydrogen peroxide - commonly used as hair bleach - may have provided the energy source for the development of life on Earth, two applied mathematicians have found.

Bacteria use DNA replication to time key decision

July 9, 2015

In spore-forming bacteria, chromosomal locations of genes can couple the DNA replication cycle to critical, once-in-a-lifetime decisions about whether to reproduce or form spores. The new finding by Rice University bioengineers ...

International consortium to study plant fertility evolution

July 2, 2015

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Recommended for you

Expanding theory of evolution

August 5, 2015

An Indiana University professor is part of an international team of biologists working to expand Darwin's theory of evolution to encompass factors that influence a species' growth and development beyond genetics—as well ...

Can genes make us liberal or conservative?

August 4, 2015

Aristotle may have been more on the money than he realised in saying man is a political animal, according to research published Wednesday linking genes with liberal or conservative leanings.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.