Eye lens and nose cells for smelling have same origin

July 12, 2007

A team of researchers at Umeå University in Sweden have discovered a unique mechanism by which the same signal molecule determines the formation of the both the lens of the eye and the olfactory cells of the nose.

Smell and sight are two sensory systems that are crucial to our ability to perceive the world around us. The ability to sense smells is established by the development of the olfactory mucous membrane. The ability to see is similarly dependent on the formation of the lens in the eyes.

Both the mucous membrane for smelling and the lens develop early in the fetal stage, but it has not been known until now precisely what signals govern their formation. A research team at Umeå University can now show that the same signal molecule regulates the formation of both the olfactory cells and the lens cells.

The findings show moreover that cells exposed to the signal for short periods become olfactory cells, while long periods of exposure give rise to lens cells. Otherwise it is a common mechanism for differing concentrations of a signal molecule to lead to different cell types.

This discovery, that differences in the length of exposure but not the concentration of the same signal determine the formation of two fundamentally different sensory organs, is of key importance to our understanding of how different types of cells are formed during the fetal period.

The findings have been published in the journal Developmental Cell.

Citation: M Sjödal, T Edlund, L Gunhaga: Time of Exposure to BMP Signals Plays a Key Role in the Specification of the Olfactory and Lens Placodes Ex Vivo, Developmental Cell, Volume 13, 141-149, 2007.

Source: Swedish Research Council

Explore further: Imaging techniques set new standard for super-resolution in live cells

Related Stories

Insights into the story of the eye

July 4, 2011

(PhysOrg.com) -- Although it is well established that embryonic stem cells (ESCs) have the capacity to develop into every adult cell type in the body, mysteries abound regarding the process by which the differentiation of ...

The self-made eye: Formation of optic cup from ES cells

April 6, 2011

Groundbreaking research from the RIKEN Center for Developmental Biology (CDB) shows how mouse stem cells spontaneously form into optic cups, the precursors of eyes. A report on this research, published this week in Nature, ...

Team identifies the off switch for biofilm formation

August 24, 2015

Bacteria are best known as free-living single cells, but in reality their lives are much more complex. To survive in harsh environments, many species of bacteria will band together and form a biofilm—a collection of cells ...

Recommended for you

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

Study suggests fish can experience 'emotional fever'

November 25, 2015

(Phys.org)—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.