Researchers prove existence of new type of electron wave

July 4, 2007

New research led by University of New Hampshire physicists has proved the existence of a new type of electron wave on metal surfaces: the acoustic surface plasmon, which will have implications for developments in nano-optics, high-temperature superconductors, and the fundamental understanding of chemical reactions on surfaces.

The research, led by Bogdan Diaconescu and Karsten Pohl of UNH, is published in the July 5 issue of the journal Nature.

“The existence of this wave means that the electrons on the surfaces of copper, iron, beryllium and other metals behave like water on a lake’s surface,” says Diaconescu, a postdoctoral research associate in the Condensed Matter Group of the physics department at UNH. “When a stone is thrown into a lake, waves spread radially in all directions. A similar wave can be created by the electrons on a metal surface when they are disturbed, for instance, by light.”

Acoustic surface plasmons have long been predicted on merely theoretical grounds, their existence has been extraordinarily difficult to prove experimentally. “Just one year ago, another group of scientists concluded that these waves do not exist,” says Karsten Pohl, associate professor of physics at UNH. “These researchers have probably not been able to find the acoustic plasmon because the experiments require extreme precision and great patience. One attempt after the other did not show anything if, for example, the surface was not prepared well enough or the detectors were not adjusted precisely enough.”

The new experiment that found the acoustic surface plasmon used an extremely precise electron gun, which shoots slow electrons on a specially prepared surface of a beryllium crystal. When the electrons are reflected back from the electron lake on the surface of the metal, some of them loose an amount of energy that corresponds to the excitation of an acoustic plasmon wave. This energy loss could be measured with a detector that was placed in an ultra-high vacuum chamber, together with the beryllium sample. The energy loss is small but corresponds exactly to the theoretical prediction.

Research on metal surfaces is important for the development of new industrial catalysts and for the cleaning the exhaust of factories and cars. As the new plasmons are very likely to play a role in chemical reactions on metal surfaces, theoretical and experimental research will have to take them into account as a new phenomenon in the future. In addition, there are several promising perspectives in nano-microscopy and optical signal processing when the new plasmons are excited directly with light diffracted off very small nano-features.

The researchers estimate that, depending on their energy, the waves spread down to a few nanometers, and die out after a few femtoseconds (one millionth of a billionth of a second) after they have been created, thus witnessing very fast chemical processes on atomic scale.

Another potential application is using the waves to carry optical signals along nanometer-wide channels for up to few micrometers and as such allowing the integration of optical signal propagation and processing devices on nanometer-length scales. And one of the most interesting but still very speculative applications of the plasmons relates to high temperature superconductivity. It is known today that the superconductivity happens in two-dimensional sheets in the material, which give rise to the special electron pairs which can move without resistance through the conductor.

How this happens precisely is unclear but acoustic plasmons could be part of the explanation. If this is the case, it is a great advantage that it is now possible to study the plasmons on surfaces, where they is much easier to probe them than inside the material.

Citation: Bogdan Diaconescu, Karsten Pohl, Luca Vattuone, Letizia Savio, Philip Hofmann, Vyacheslav M. Silkin, Jose M. Pitarke, Eugene V. Chulkov, Pedro M. Echenique, Daniel Farías y Mario Rocca. Low-energy acoustic plasmons at metal surfaces. Nature, doi:10.1038/nature05975.

Source: University of New Hampshire

Explore further: Using light-force to study single molecules

Related Stories

Mitochondria on guard of human life

November 18, 2015

A group of researchers from Lomonosov Moscow State University in collaboration with Russian Science Foundation has developed a unique method for the selective study of electron transport chain in living mitochondria by using ...

Researchers design and patent graphene biosensors

November 13, 2015

The Moscow Institute of Physics and Technology (MIPT) is patenting biosensor chips based on graphene, graphene oxide and carbon nanotubes that will improve the analysis of biochemical reactions and accelerate the development ...

Metamaterial absorbers for infrared inspection technologies

September 28, 2015

Plasmonic metamaterials are man-made substances whose structure can be manipulated to influence the way they interact with light. As such, metamaterials offer an attractive platform for sensing applications, including infrared ...

Recommended for you

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.