Air pressure matters when landing on sandy planets

July 3, 2007
Air pressure matters when landing on sandy planets
A sequence of high speed images reveals the plume thrown up when a sphere crashes into a layer of sand. Credit: Gabriel Caballero et al. Physical Review Letters

A steel ball dropped into loose, fine sand makes an impressive splash, according to physicists of the Physics of Fluids group investigating the fluid-like properties of sand at the University of Twente in the Netherlands. Such considerations factor into designing a rover to land on and move about Martian dunes or other dusty surfaces.

Just as a cannon-ball dive into a pool will send a plume of water into the air, the researchers led by Detlef Lohse found that the steel ball was instantly engulfed by the fine sand, sending up a dust plume with a height that depended on the air pressure. When they decreased the air pressure in the experiment, they found that the ball penetrated less deeply into the sand and sent up a shorter plume.

It's natural that the plume height varies with the depth of the ball's penetration into the dust because the plume is caused by the sudden collapse of the cavity formed by the steel ball's impact. Higher air pressure causes greater air-sand mixing near the surface of the ball which leads to reduced friction and more fluid-like behavior. Reduced friction means deeper penetration thus a higher plume.

Most astrophysics researchers prefer that their rovers are not buried on impact, which makes low-pressure atmospheres more favorable for landing robots on dusty planets. Luckily, the atmospheric pressure on Mars is only about 1% of the pressure here on Earth.

Citation: Gabriel Caballero et al., Physical Review Letters (forthcoming article)

Source: American Physical Society

Explore further: Dust devils detected by seismometer could guide Mars mission

Related Stories

Dust devils detected by seismometer could guide Mars mission

November 9, 2015

Buried in the shallow soft mud of a dry California lake bed, a seismometer was able to detect the tiny tilts of the ground as it was pulled up by passing dust devils. The experiment, described online November 10 in the Bulletin ...

Jupiter's moon Europa

September 30, 2015

Jupiter's four largest moons – aka. the Galilean moons, consisting of Io, Europa, Ganymede and Callisto – are nothing if not fascinating. Ever since their discovery over four centuries ago, these moons have been a source ...

The fact and fiction of Martian dust storms

September 21, 2015

For years, science fiction writers from Edgar Rice Burroughs to C. S. Lewis have imagined what it would be like for humans to walk on Mars. As mankind comes closer to taking its first steps on the Red Planet, authors' depictions ...

What is life?

October 20, 2015

"Why would NASA want to study a lake in Canada?"

Recommended for you

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.