Spitzer Searches for the Origins of Life

June 13, 2007
Spitzer Searches for the Origins of Life
This false-color composite from NASA's Spitzer Space Telescope and NASA's Chandra X-ray Observatory shows the remnant of one a supernova, or the explosive death of a star. Image credit: NASA/JPL- Caltech/Harvard-Smithsonian CfA

Astronomers suspect the early Earth was a very harsh place. Temperatures were extreme, and the planet was constantly bombarded by cosmic debris. Many scientists believe that life's starting materials, or building blocks, must have been very resilient to have survived this tumultuous environment.

Now, NASA's Spitzer Space Telescope has learned, for the first time, that organic molecules believed to be among life's building blocks, called polycyclic aromatic hydrocarbons, can survive another type of harsh setting, an explosion called a supernova. Supernovae are the violent deaths of the most massive stars. In death, these volatile objects blast tons of energetic waves into the cosmos, destroying much of the dust surrounding them.

The fact that polycyclic aromatic hydrocarbons can survive a supernova indicates that they are incredibly tough - like cosmic cockroaches enduring a nuclear blast. Such durability might be further proof that these molecules are indeed among life's building blocks.

Achim Tappe of the Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass., used Spitzer's infrared spectrograph instrument to detect abundant amounts of polycyclic aromatic hydrocarbons along the ridge of supernova remnant N132D. The remnant is located 163,000 light-years away in a neighboring galaxy called, the Large Magellanic Cloud.

"The fact that we see polycyclic aromatic hydrocarbons surviving this explosion illustrates their resilience," says Tappe.

These intriguing molecules are comprised of carbon and hydrogen atoms, and have been spotted inside comets, around star-forming regions and planet-forming disks. Since all life on Earth is carbon based, astronomers suspect that some of Earth's original carbon might have come from these molecules - possibly from comets that smacked into the young planet.

Astronomers say there is some evidence that a massive star exploded near our solar system as it was just beginning to form almost 5 billion years ago. If so, the polycyclic aromatic hydrocarbons that survived that blast might have helped seed life on our planet.

Tappe's paper was published in the December 10, 2006, issue of Astrophysical Journal.

Source: by Whitney Clavin, JPL/NASA

Explore further: Surprisingly complex fingerprint of PAH molecules in space

Related Stories

Surprisingly complex fingerprint of PAH molecules in space

November 17, 2015

Astronomers searching for interstellar PAH-molecules interpret their data incorrectly. This is concluded by researchers from the University of Amsterdam (UvA), the Leiden Observatory, the Radboud University and NASA Ames ...

The moons of Saturn

September 14, 2015

Saturn is well known for being a gas giant, and for its impressive ring system. But would it surprise you to know that this planet also has the second-most moons in the Solar System, second only to Jupiter? Yes, Saturn has ...

NIST creates polycyclic aromatic hydrocarbon structure index

January 7, 2014

Recently, a new website containing a wealth of information on polycyclic aromatic hydrocarbons (PAHs) was made publicly available by NIST. PAHs are compounds that are produced during the combustion of hydrocarbon fuels and ...

Recommended for you

A blue, neptune-size exoplanet around a red dwarf star

November 25, 2015

A team of astronomers have used the LCOGT network to detect light scattered by tiny particles (called Rayleigh scattering), through the atmosphere of a Neptune-size transiting exoplanet. This suggests a blue sky on this world ...

The hottest white dwarf in the Galaxy

November 25, 2015

Astronomers at the Universities of Tübingen and Potsdam have identified the hottest white dwarf ever discovered in our Galaxy. With a temperature of 250,000 degrees Celsius, this dying star at the outskirts of the Milky ...

Aging star's weight loss secret revealed

November 25, 2015

A team of astronomers using ESO's Very Large Telescope has captured the most detailed images ever of the hypergiant star VY Canis Majoris. These observations show how the unexpectedly large size of the particles of dust surrounding ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.