Rescue Robot Tests To Offer Responders High-Tech Help

June 12, 2007
Rescue Robot Tests To Offer Responders High-Tech Help
An urban search and rescue robot moves across a rubble pile in a recent NIST/DHS exercise. The next rescue robot exercise will be held on June 18-22, 2007, at Texas A&M’s “Disaster City” training facility. Credit: NIST

National Institute of Standards and Technology engineers are organizing the fourth in a series of Response Robot Evaluation Exercises for urban search and rescue (US&R) responders to be held on June 18-22, 2007, at Texas A&M’s “Disaster City” training facility in College Station, Texas.

These events, sponsored by the Department of Homeland Security’s (DHS) Science and Technology Directorate, test robot performance on emerging standard test methods using actual training scenarios for emergency responders. The results will be used to refine the test methods, and in developing usage guides that match specific kinds of US&R robots to particular disaster scenarios.

This exercise will use two Disaster City training scenarios. A simulated structural collapse of a municipal building will allow responders to deploy robots to search for victims and assist in “rendering the structure safe” for responders to extricate those victims. This will require robots to face a variety of challenges as they traverse complex and confined spaces within the structure’s semi-collapsed walls, sloping floors, rubble and voids while searching for victims. The robots will be deploying high-tech sensors such as laser scanners to capture the size and shape of interior voids to help structural engineers set up shoring supports.

Responders also will use robots to investigate a “train wreck/derailment” involving a passenger train and an industrial HAZMAT tanker train carrying unknown substances. The unknown hazards of the incident will require emergency responders to direct work from a distance of 150 m (500 ft) initially. This scenario will require robots to traverse railroad tracks, wreckage and debris to map the scene, look in windows to locate victims, find hazardous leaks and identify tanker placards describing their contents. Some robots also may take samples of unknown substances for analysis, all while being remotely controlled from a safe distance. This exercise will focus on ground robots that are highly agile, human-portable, or even throwable, and robots that can circumnavigate a large area from a remote operator station. The robots will feature a variety of sensors, including color cameras, two-way audio transmitters, thermal imagers, chemical sensors, 3D mapping systems and GPS locators paired with geographic information systems (GIS).

Robot developers and vendors benefit from these exercises by learning firsthand what emergency responders need to perform their roles safely and effectively, and by getting feedback about their systems during mock deployments. The emergency responders benefit by getting to work with a wide variety of high-tech solutions within their own deployment scenarios and to guide robot developers toward answering their needs. Both communities will benefit from the emerging standard robot test methods being developed as a result of these exercise, which will provide a means of measuring and comparing robot performance to help responders understand the trade-offs of particular devices, and also help measure and compare operator proficiency in performing critical task through remote control interfaces.

This Response Robot Evaluation Exercise is locally hosted by the Texas A&M Engineering Extension Service and the Texas Federal Emergency Management Agency (FEMA) task force team (TX-TF1).

Source: NIST

Explore further: One year and counting: Mars isolation experiment begins

Related Stories

Programming materials for better designs

August 12, 2015

We often think of the everyday materials we use to build our human world as static, but we should think again: MIT's Self-Assembly Lab programs such materials to transform themselves to handle tasks more simply and efficiently, ...

Recommended for you

Team develops targeted drug delivery to lung

September 2, 2015

Researchers from Columbia Engineering and Columbia University Medical Center (CUMC) have developed a new method that can target delivery of very small volumes of drugs into the lung. Their approach, in which micro-liters ...

Not another new phone! But Nextbit's Robin is smarter

September 2, 2015

San Francisco-based Nextbit wants you to meet Robin, which they consider as the smarter smartphone. Their premise is that no one is making a smart smartphone; when you get so big it's hard to see the forest through the trees. ...

Team creates functional ultrathin solar cells

August 27, 2015

(Phys.org)—A team of researchers with Johannes Kepler University Linz in Austria has developed an ultrathin solar cell for use in lightweight and flexible applications. In their paper published in the journal Nature Materials, ...

Magnetic fields provide a new way to communicate wirelessly

September 1, 2015

Electrical engineers at the University of California, San Diego demonstrated a new wireless communication technique that works by sending magnetic signals through the human body. The new technology could offer a lower power ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.